dination Authors 3-Noëlle Nga Pham-Thi -Thanh

Coordination
Marie-Noëlle

Mau Nguyen-Dang

Thuy Tran-Thanh Son Nguyen-Van Quyen Nguyen-Huu Phong Le-Van

Oat Nguyen-Ngoc

Son Nguyen-Hong

Duong Trinh-Hoang

Phong Nguyen-Bui Tam Tran-Thi

Research Populs

Extreme Heat in Urban Areas of Vietnam:
A Systematic Review

Intr	oduction	5		
Background on urban climate				
Drivers of extreme heat in urban areas				
Urban heat challenges in Vietnam				
Obj	ectives of the study	10		
1.	Methodology	12		
1.1.	Systematic literature review	12		
1.2.	Data collection from Media sources	16		
1.3.	Information retrieval, analysis and synthesis	17		
2.	Results	19		
2.1.	Overview of legal documents and scientific articles	19		
2.2.	Meteorological observations and modeling studies (Obs&M)	26		
2.3.	Heat-Urban surface studies (H-US)	27		
2.4.	Heat-Remote sensing & GIS studies (H-RS&GIS)	28		
2.5.	Heat-Health and disease studies (H-H&D)	29		
2.6.	Issues of population exposure, impacts and vulnerability	31		
2.7.	Policy and community preparedness for extreme heat events	34		
3.	Discussion	41		
4.	Conclusions	43		
4.1.	Summary of the findings	43		
4.2.	Recommendations	44		
4.3.	Additional perspectives	47		
Bibl	iography	49		
Legal Documents (LD_EUH)				
Scientific Publications In Vietnamese				
Scientific publications In English				
Additional scientific publications				
List	of acronyms and abbreviations	60		

Agence française de développement

Papiers de recherche

Les Papiers de Recherche de l'AFD ont pour but de diffuser rapidement les résultats de travaux en cours. Ils s'adressent principalement aux chercheurs, aux étudiants et au monde académique. Ils couvrent l'ensemble des sujets de travail de l'AFD: analyse économique, théorie économique, analyse des politiques publiques, sciences de l'ingénieur, sociologie, géographie et anthropologie. Une publication dans les Papiers de Recherche de l'AFD n'en exclut aucune autre.

Les opinions exprimées dans ce papier sont celles de son (ses) auteur(s) et ne reflètent pas nécessairement celles de l'AFD. Ce document est publié sous l'entière responsabilité de son (ses) auteur(s) ou des institutions partenaires.

Research Papers

AFD Research Papers are intended to rapidly disseminate findings of ongoing work and mainly target researchers, students and the wider academic community. They cover the full range of AFD work, including: economic analysis, economic theory, policy analysis, engineering sciences, sociology, geography and anthropology. AFD Research Papers and other publications are not mutually exclusive.

The opinions expressed in this paper are those of the author(s) and do not necessarily reflect the position of AFD. It is therefore published under the sole responsibility of its author(s) or its partner institutions.

Review on Extreme Heat in Urban Area in Vietnam

Authors

Nga Pham-Thi-Thanh

Viet Nam Institute of Meteorology, Hydrology, and Climate Change (IMHEN)

Mau Nguyen-Dang

IMHEN

Thuy Tran-Thanh

IMHEN

Son Nguyen-Van

IMHEN

Duong Trinh-Hoang

IMHEN

Phong Nguyen-Bui

IMHEN

Tam Tran-Thi

IMHEN

Son Nguyen-Hong

IMHEN

Quyen Nguyen-Huu

IMHEN

Phong Le-Van

IMHEN

Dat Nguyen-Ngoc

IMHEN

Coordination

Marie-Noëlle Woillez (AFD)

Abstract

This study provides a systematic review of scientific and grey literature, in both english and vietnamese, on extreme heat in Vietnam's urban areas. We assess the current state of knowledge on this issue, the role of urban heat islands, impacts vulnerabilities. anthropogenic factors, including rapid urbanization, inadequate infrastructure, and population density are identified as key contributors to worsening heat extremes. The study also evaluates current adaptation and mitigation strategies, such as green infrastructure, early warning systems, and public awareness programs, highlighting major gaps in research, policy implementation, public awareness, particularly in secondary cities among vulnerable populations, where adaptation efforts remain insufficient. We conclude with public policy recommendations to address the growing challenges of extreme heat in Vietnam's rapidly urbanizina cities. ensuring sustainable urban development and improved quality of life.

Keywords

Extreme Heat, Urban Heat Island, Climate Change, Urban Areas, Vietnam, Health, Vulnerability, Adaptation, Mitigation, Hanoi, Ho Chi Minh City.

Acknowledgements

This research has been conducted within the framework of the GEMMES Viet Nam 2 project, funded by AFD through Facility 2050.

Original version

English

Accepted

November 2025

Résumé

Cette étude fournit une revue systématique de la littérature scientifique et littérature grise, en anglais et vietnamien, sur les chaleurs extrêmes en zone urbaine au Vietnam. Nous évaluons l'état actuel des connaissances sur cette problématique, le rôle des îlots de chaleur urbains, les impacts et les vulnérabilités. Les facteurs anthropiques locaux, notamment l'urbanisation l'inadéquation rapide. des infrastructures et la forte densité de population, sont identifiés comme des facteurs clés contribuant à l'aggravation des chaleurs extrêmes. L'étude évalue également les stratégies actuelles d'adaptation d'atténuation, telles que les infrastructures vertes, systèmes d'alerte précoce et les programmes de sensibilisation du public, mettant ainsi en lumière des lacunes majeures dans la recherche, la mise en œuvre des politiques et la sensibilisation du public, en particulier dans les villes parmi secondaires et les populations vulnérables, où les efforts d'adaptation restent insuffisants. Nous concluons avec des recommandations de politiques publiques visant à relever les défis croissants posés par les chaleurs extrêmes dans les villes vietnamiennes en plein essor, afin de garantir un développement urbain durable et une meilleure qualité de vie.

Mots-clés

Chaleur extreme, îlot de chaleur urbain, changement climatique, zones urbaines, Vietnam, santé, vulnérabilité, adaptation, atténuation, Hanoi, Ho Chi Minh Ville.

Remerciements

Ce travail a été réalisé dans le cadre du programme de recherche GEMMES Viet Nam 2, financé par l'AFD via la Facilité 2050.

Version originale

Anglais

Acceptée

Novembre 2025

Introduction

Background on urban climate

Urban climate refers to the surface climate in a city, which differs from the surrounding suburban and rural areas due to anthropogenic activities and land surface modifications [168][169]. Urban climates are characterized by higher surface temperatures (up to several degrees Celsius at night), reduced wind speeds, and lower relative humidity compared to surrounding regions. This localized warming, known as the Urban Heat Island (UHI) effect, arises from the accumulation heat in urban of infrastructure and weakened natural cooling processes [165] [167].

Empirical evidence shows that global research on urban climates has evolved through three distinct phases: (i) prior to 1990, studies on urban climate were limited; (ii) between 1990 and 2010, the volume of research increased approximately threefold; and (iii) since 2015, the annual number of publications has tripled compared to 2010 [170]. Initially, the research was largely conducted by meteorologists and environmental scientists, but the scope has since expanded to include interdisciplinary studies on urban planning, green infrastructure, and climate resilience. After 2010, studies addressed issues such as the spatial distribution of green spaces, housing, energy, and building engineering. Interdisciplinary research on technical solutions for thermal insulation (for both heat and cold), resistance to strong winds, urban flooding, urban space design, and housing design has been rapidly applied in practice in many countries [170].

The World Meteorological Organization (WMO) has identified the increasing impacts of natural disasters and the accelerated pace of urbanization as major climate challenges for urban areas [172]. worldwide Addressing these challenges is critical for achieving multiple United Nations Sustainable Development Goals (SDGs), including goals related to climate action, sustainable cities, and public health. Among the 17 SDGs, urban climate resilience is linked to Goals 6, 7, 11, 12, 13, 14, and 15 [174]. In the context of climate change, studying and clarifying the relationship between climate and urban areas would provide a scientific basis for urban planning and the development of green, low-emission, smart, and climate-resilient cities. With the following objectives: (i) create a more comfortable favorable and living environment for people; (ii) enhance resilience to natural disasters and climate change, hence reducing the risks of adverse impacts and disease outbreaks [88][89][90]; (iii) reduce greenhouse gas emissions [89].

Drivers of extreme heat in urban areas

The development of extreme heat in urban areas results from the interaction of global climate drivers and local anthropogenic factors. At the global scale, greenhouse gas (GHG) emissions from human activities contribute to longterm global warming [159]. This global warming trend interacts with natural climate variability at the regional scale and combine with localized human drivers create distinct urban climate conditions and intensify urban climate risks [98][99][155].

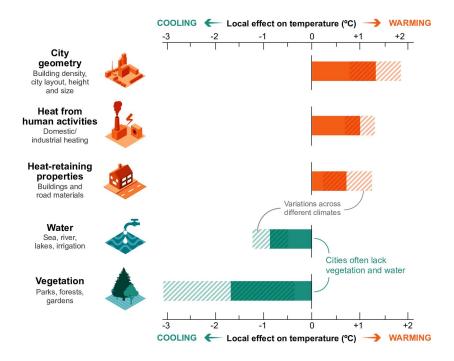
Four main local factors (Figure 1) contribute to increased temperatures in urban areas [159]:

- i) Urban geometry. Tall and close buildings absorb and store heat and also reduce natural ventilation, trapping heat in urban canyons.
- ii) Heat release from human activities.

 Anthropogenic heat emissions from air conditioning systems, industrial activities, and transportation, together with air pollution, contribute to amplifying the UHI effect and disturb the energy and water balance in urban environments [172].
- iii) Heat-retaining properties of materials.
 The physical properties of materials commonly used in urban construction

 such as concrete, asphalt, and bricks
 significantly alter the thermal and

radiative balance compared to natural


surfaces, thereby intensifying the UHI effect [168][169]. These materials typically have higher heat capacity and thermal conductivity, along with lower reflectivity (albedo) and emissivity, resulting in increased heat absorption during the day and prolonged heat release at night.

iv) The lack of vegetation and water bodies, which could counterbalance these heating factors, limits natural cooling processes.

All these factors act on sensible and latent heat fluxes in the city and play a critical role in shaping the urban thermal environment, intensifying localized heat accumulation. Finally, the expansion of impervious surfaces further exacerbates these effects by reducing water infiltration and evapotranspiration, which limits the natural cooling of surfaces and increases surface runoff and urban flooding risks [168][169].

While UHI is a well-documented phenomenon, the magnitude and spatial distribution of urban heat exposure vary depending on the city's land use patterns, construction materials, energy consumption, and urban design, but also on the background climate.

Figure 1. Efficiency of the various factors at warming up or cooling down neighbourhoods of urban areas.

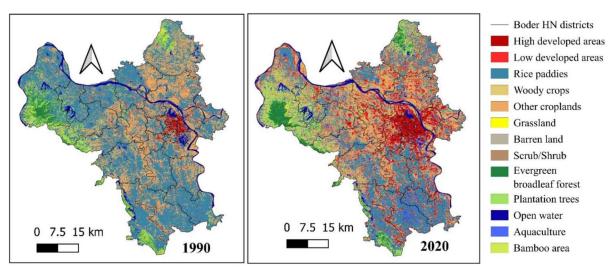
Note: The hatched areas on the bars show how the strength of the warming or cooling effects of each factor varies depending on the local climate. For example, vegetation has a stronger cooling effect in temperate and warm climates. Source: IPCC (2021), FAQ 10.2, Figure 1.

Urban heat challenges in Vietnam

According to the 6th Assessment Report of the Intergovernmental Panel on Climate Change [159], the global average surface temperature has risen by approximately 1.1°C over 2011-2020 compared to the preindustrial era, and is projected to further increase by 1.5°C to 4.5 °C by the end of the 21st century, depending on global greenhouse gas emission scenarios [159]. The 2024 update of key indicators of the state of the climate system shows that for 2015-2024 global warming level reached [1.11-1.35°C] compared 1.24°C

preindustrial [175]. Without changes, the 2°C threshold could be reached by midcentury, and exceeded in the second half of the century [176].

The synergy between increasing hot extremes driven by global warming and the UHI effect poses significant risks to urban areas in Vietnam. Major cities, such as Hanoi and Ho Chi Minh City, are experiencing more frequent and intense heatwaves, with record-breaking temperatures observed in recent years. For instance, during the June 2017 heatwave, Ha Dong station in Hanoi recorded a maximum temperature of


42.5°C, the highest in the city's history [28][30]. Similarly, in April 2019, Northern Vietnam experienced unprecedented heat, with temperatures reaching 41.1°C in Hoa Binh City (Hoa Binh Province, surpassing the previous record of 40.5°C), 43.4°C in Huong Khe (Ha Tinh Province), 43.0°C in Tuyen Hoa (Quang Binh Province, surpassing the previous record of 41.4°C), and 38.9°C at Ha Dong station (Hanoi, surpassing the previous record of 38.5°C) [28][30]. In May 2023, Hanoi faced another severe heatwave, with temperatures exceeding 41.0°C (41.0°C and 41.3°C recorded at Lang and Ha Dong stations, respectively, which was the highest May temperatures on record) [28][30]. While these figures are based on standard meteorological shelters, they likely underestimate actual surface heat stress urban areas. Indeed, empirical observations and remote sensing data consistently show that surface temperatures on urban infrastructure (e.g., roads, rooftops) often exceed air temperature by 10°C or more under direct sunlight - further intensifying human exposure to extreme heat.

In Vietnam, rapid and often unplanned urbanization over the last decades has increased the extent of impervious surfaces and reduced vegetation cover, especially in major cities such as Hanoi and Ho Chi Minh City. The comparison of land use types in Hanoi between 1990 and 2020 (Figure 2) reveals a sharp decline in rice paddy areas, from 53% to 30% of the

total surface, while residential land increased from about 3% to 17% [163]. Similarly, impervious surfaces in Ho Chi Minh City increased by about 57% between 2002 and 2022 (Figure 3), and are projected to nearly double by 2032 compared to 2022 [164]. This evolution is primarily driven by construction expansion and infrastructure projects [164].

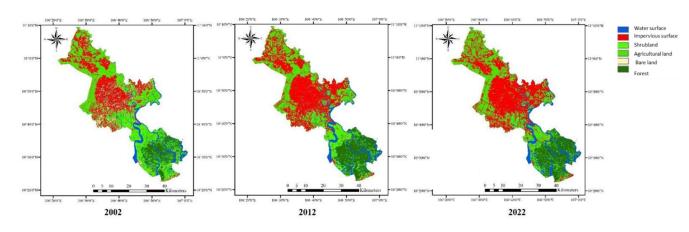

Moreover, UHI is often exacerbated by inefficient energy use, limited green spaces, and poor building design. Urban development in Vietnam has traditionally prioritized maximizing land use and builtdensity, while heat mitigation considerations have remained limited in construction practices and urban planning. Many urban areas in Vietnam climate-sensitive lack planning regulations, and national building codes currently emphasize structural safety over thermal comfort or heat mitigation [9][12][33]. As cities continue to densify, the prioritization of high-rise buildings and paved surfaces — without sufficient integration of vegetation or cooling infrastructure — creates a feedback loop that amplifies both temperature and energy demand. Hence, transformations in land use reflect the intensifying pressures of urbanization and are stronaly associated with increased surface temperatures and UHI formation.

Figure 2. Evolution of land use in Hanoi between 1990 and 2020.

Source: Modified from Tuan Tran Nguyen (2024) [163].

Figure 3. Land use evolution in Ho Chi Minh City from 2002 to 2022.

Source: Tung et al., (2023) [164]

Another key challenge is the limited inclusion of urban-specific metrics in national climate planning. While Vietnam has developed and regularly updated national climate change scenarios (e.g., MONRE, 2021) [22], these often do not disaggregate data by urban versus rural settings. Urban microclimates are still

poorly characterized and important indicators such as Heat Index (HI) or Wet-Bulb Globe Temperature (WBGT), and urban-specific projections of extreme heat are generally absent. This limits the ability of city governments and sectoral agencies to assess exposure, plan

responses, or prioritize interventions for heat resilience.

As highlighted in the review of Woillez (2024) [150] (see references therein), extreme heat already has significant negative impacts in Vietnam. In particular, several studies reveal a correlation between heatwaves and public health issues, including increased hospital admissions and а higher incidence of heat-related illnesses [150]. This underscores the urgent need to understand and mitigate impacts of extreme urban heat in the context of climate change.

Objectives of the study

Vietnam's rapidly expanding cities are at the frontline of climate change. The convergence of UHI effects, rising background temperatures, poor urban ventilation, and limited adaptive capacity poses an increasingly urgent threat to public health, urban infrastructure, and social equity. Addressing these challenges requires enhanced monitoring, data disaggregation, localized urban climate scenarios, and the mainstreaming of heat mitigation into all levels of urban planning and policy.

In Vietnam, research on urban climate, particularly extreme heat events, has gained attention over the past two decades, primarily using remote sensing and GIS methodologies. However, significant gaps remain in understanding

the localized impacts of extreme heat and the effectiveness of adaptation measures [89]. Existing studies, while valuable, lack comprehensive evaluations to guide policy implementation and urban planning.

Nonetheless, research efforts have significantly contributed to the development of legal frameworks and policy mechanisms aimed at mitigating the adverse impacts of urban heat and enhancing urban resilience. Vietnam has begun integrating urban climate considerations into national and local frameworks. planning Government initiatives such as the National Climate Change Adaptation Plan (2021–2030, updated in 2024) [11][17], the National Climate Change Strategy to 2050 [15], and the Urban and Rural System Master Plan (2021–2030) [16], all include elements targeting extreme heat. areen and infrastructure. smart urban development. The Ministry of Construction and Ministry of Health have also issued action plans and technical guidelines aimed at promoting climate-resilient cities [9][10][12][14]. However, while policy frameworks are evolving, many implementation gaps remain.

In this context, this study aims to address these gaps by conducting a thorough review of scientific literature and grey sources in both English and Vietnamese in order to:

- Assess the current state of knowledge on extreme heat in urban areas and related impacts and vulnerability in Vietnam across disciplines, including meteorology, public health, urban planning, and environmental governance.
- Review current adaptation and mitigation strategies, including legal frameworks, green infrastructure efforts, early warning systems, and public awareness campaigns.
- Assess the level of awareness of population and decision makers of the risks posed by extreme heat.

By synthesizing current research and identifying critical knowledge gaps, this review aims to inform policy decisions and support the development of effective strategies to mitigate the impacts of extreme heat in Vietnam's rapidly urbanizing cities. Based on the findings of the review, we provide recommendations for strengthening urban resilience to extreme heat, with a focus on interdisciplinary research, data-driven planning, and policy integration.

The methodology is presented in Section 1 and the results in Section 2. We discuss the findings in Section 3, and present the main conclusions and recommendations in Section 4.

1. Methodology

1.1. Systematic literature review

To conduct this study, we organized a systematic search for relevant literature. The selection process followed PRISMA guidelines, ensuring transparency in document screening. To capture a broad scope of evidence, we collected documents from three main sources of evidence:

- (i) peer-reviewed scientific articles (both English and Vietnamese);
- (ii) policy documents, legal frameworks, and strategic reports from central and local governmental agencies;
- (iii) institutional reports and grey literature related to urban heat adaptation and mitigation.

Collected documents were categorized based on thematic relevance, covering legal frameworks, policy reports, meteorological studies, and public health assessments related to extreme heat in urban Vietnam. A PRISMA flowchart (Figure 4) was developed to illustrate the document selection process and the reasons for exclusion, ensuring the reproducibility and transparency of the review. The selection process followed three stages: 1) identification and collection; 2) screening and inclusion.

1.1.1. Step 1: Identification and collection

For peer-reviewed scientific articles and institutional reports published in academic or professional outlets, we performed database searches in PubMed, Web of Science, Embase, CINAHL, and Google Scholar. Search queries were applied to the titles, abstracts, and keywords, using a combination of key terms and Boolean operators. The search terms include: "extreme urban heat", "urban heat island", "urban areas", "heat risk assessment", "urban vulnerability", "population exposure", "adaptation strategies", "heatwave impacts", "heat stress", "city", "urban area", "urban climate", "public health", "Hanoi", "Ho Chi Minh City", and "high temperature". To ensure comprehensive coverage, the identification of Vietnamese-language studies involved a structured keyword search using Vietnamese equivalents of key terms, complemented by manual screening of domestic academic journals and institutional or provincial repositories to ensure comprehensive coverage. The search was restricted to publications between January 2008 and February 2025. This timeframe was selected to reflect the period of active climate policy implementation and

research following the launch of Vietnam's National Target Program to Respond to Climate Change (NTP-RCC).

Legal documents, policy mechanisms, institutional frameworks, strategies, plans, programs, and strategic reports/documents, official materials were not collected through academic databases but retrieved through manual searches from the official websites and repositories of governmental bodies, as well as directly from internal archives where applicable. The main governmental sources included the Ministry of Natural Resources and Environment (MONRE), the Ministry of Construction (MOC), the Ministry of Health (MOH), the Viet Nam Meteorological and Hydrological Administration (VNMHA), and the National Centre for Hydro-Meteorological Forecasting (NCHMF). Data from local authorities and previous studies conducted by the Viet Nam Institute of Meteorology, Hydrology, and Climate Change (IMHEN) were also included. These materials encompassed documents, reports on extreme heat and heatwaves, and records of high-temperature events in urban areas, etc.

All collected documents (full papers) were stored and managed using Microsoft Excel, with metadata fields including title, keywords, abstract, publication year, issues addressed, methods, and key findings to facilitate data organization and retrieval. The Covidence platform was used separately for English and Vietnamese articles. This platform facilitates the systematic review process by managing and tracking article screening, ensuring consistency and transparency across both language groups.

To facilitate thematic analysis, the collected documents were categorized into three main groups, then divided into subgroups (as shown in Figure 4):

• Legal Documents

The group of legal documents, policy mechanisms, strategies, plans, and strategic reports/documents, as well as strategic or official reports from institutional bodies, are collectively referred to as Legal Documents related to Extreme Urban (Heat – LD_EUH) in the forthcoming sections. LD_EUH includes documents directly referencing the keywords "extreme urban heat" and "urban heat island". We categorized them into three main subgroups:

- i) Legal documents, including laws, circulars, decrees, national technical regulations (QCVN), Vietnamese standards (TCVN), and guidance documents;
- ii) Policy mechanisms, strategies, plans, and urban planning, encompassing policy frameworks, strategic plans, and urban development guidelines;

iii) Strategic reports/documents from central to local agencies, including official reports and other documentation produced by government bodies at both central and local levels.

For the category *strategic reports/documents*, further subgroups were created based on thematic relevance: related to climate change and hydrometeorology, construction sector, and health sector.

• Scientific articles and books in Vietnamese and English

For the analysis, we separated the scientific literature in Vietnamese and the literature in English. The documents in each category were then classified into five thematic groups:

- i) Meteorological Observation & Modeling (Obs&M), including studies based on meteorological observation data from hydrometeorological stations and numerical modeling, typically conducted by meteorologists;
- i) Heat Urban Surface (H-US), covering research on local factors such as housing, green spaces, parks, lakes, urban planning and their interactions with urban climate and heatwaves. These studies are usually conducted by meteorologists and construction experts;
- ii) **Heat Remote Sensing & GIS** (H-R&GIS), comprising studies using remote sensing data and GIS technology to investigate urban climate and heatwaves, typically conducted by meteorologists, environmental scientists, and geographers;
- iii) **Heat-Health & Diseases** (H-H&D), encompassing studies on public health and diseases related to urban climate and heatwaves. Such research is typically conducted by health and public health experts, often in collaboration with meteorologists, geographers, and environmental scientists:
- iv) **Heat-Policies** (H&P), including reviews and policy analyses on responses to heatwaves and high temperatures in urban areas in Vietnam.

1.1.2. Step 2: screening and inclusion

In the screening stage, titles and abstracts (or executive summaries for policy/legal documents) were first reviewed for relevance. Full-text reviews were then conducted to assess alignment with the research focus. For Vietnamese-language studies, only those with explicit reference to urban settings — such as city-level temperature trends, urban heat islands, or heat-related vulnerability — were retained. Broader studies without disaggregated urban data were excluded.

Identification of scientific articles in Vietnamese Identification of scientific articles in English Studies from databases: 89 References removed: 23 References removed: 34 Studies from databases: 124 Obs&M: 35 Obs&M: 15 Identification Obs&M: 13 Obs&M: 2 H-US: 8 H-US: 0 Policies&Strategies: 84 Laws: 5Policies&Strategies: 6 H-US: 14 H-US:1 H-S&GIS: 0 H-S&GIS: 15 Reports/Documents/Projects: H-S&GIS: 1 H-S&GIS: 12 H-H&D: 28 • H-H&D:8 H-H&D: 30 • H-H&D: 76 • HPs:3 HPs: 0 • HPs: 9 • HPs: 0 LD_EUH screened: 146 Studies Screened: 66 Studies removed: 17 Studies screened: 90 Studies removed: 30 Policies&Strategies: 78Reports/Documents/Project Policies&Strategies: 6Reports/Documents/Project: Obs&M: 20 • Obs&M:9 · Obs&M:11 • Obs&M: 2 H-US: 0 H-US: 8 H-US: 13 H-US: 2 H-S&GIS: 15 H-S&GIS: 0 H-S&GIS: 11 H-S&GIS: 1 H-H&D: 20 H-H&D:8 H-H&D: 46 • H-H&D: 22 • HPs: 3 HPs: 0 Sceening HPs:9 • HPs: 4 Studies for eligibility: 49 Studies excluded: 0 Studies excluded: 0 Studies for eligibility: 59 Laws: 7Policies&Strategies: 72Reports/Documents/Projects: Laws: 0Policies&Strategies: 0Reports/Documents/Projects: 0 Obs&M: 11 Obs&M:0 Obs&M:9 Obs&M:0 H-US: 8 H-US:0 H-US: 0 H-US: 11 H-S&GIS: 15 H-S&GIS: 0 H-S&GIS: 0 H-S&GIS: 10 • H-H&D: 12 H-H&D:0 H-H&D: 24 • H-H&D:0 • HPs: 3 HPs: 0 HPs:0 • HPs: 5 Studies included in the review: 49 ObS&M: 2 Future risk Included Studies included in the review: 59 · Obs&M: 11 (5 strong relevant) Obs&M:9 Laws: 7 (2 strong relevant)
Policies&Strategies: 72 (5 • H-US:8 • H-US: 11 H-S&GIS: 15 H-S&GIS: 10 H-H&D: 12 H-H&D: 25 • HPs: 3 • HPs: 5 **Total Legal Documents in review: 129** Total studies included in review: 108 NOTE: (i) Meteorological Observations&modelling: Obs&M; (ii) Heat-Urban Surface: H-US; (iii) Heat-Remote Sensing&GIS: H-R&GIS; (iv) Heat-Health&Diseases: H-H&D; (v) Heat-Urban Policy: H-HP

Figure 4. Flowchart of selection of legal documents and scientific articles.

Source: Authors's own elaboration.

During the screening process, documents were included for a full-text review if they met at least one of the following criteria:

- (i) addressed extreme heat, heatwaves, or urban heat island (UHI) effects;
- (ii) focused on urban areas in Vietnam, unless explicitly linked to urban heat or heat stress;
- (iii) discussed relevant aspects such as exposure, vulnerability, health or economic impacts, urban anthropogenic drivers, adaptation/mitigation strategies, or policies;
- (iv) were full-text accessible in scientific, policy, or technical formats.

We excluded irrelevant documents, such as:

- studies focused exclusively on indoor thermal environments;
- documents addressing climate hazards other than extreme heat, such as floods, heavy rainfall, tropical storms, or typhoons, unless they explicitly addressed their interaction with urban heat or heat stress:
- laboratory-based studies where temperature variables were artificially controlled and did not reflect real-world urban climate dynamics;
- non-research content such as editorials, comments, letters to the editor, opinion pieces, and introductions;
- documents without full-text access;
- documents that were not focused on urban settings, including those addressing rural or regional contexts without urban relevance;
- duplicates and outdated documents.

1.2. Data collection from Media sources

To examine political and community engagement with heatwaves and climate extremes in urban Vietnam, we completed our review of the LD_EUH documents by a systematic media analysis using web data scraping tools. We used the methods outlined in the Lancet Countdown 2021 [167] for tracking down the progress of two heat-health indicators in cities. A predefined set of keywords related to heatwaves and urban environments was utilized to identify relevant media publications. These keywords included both English and Vietnamese terms, such as: "heatwave", "extreme heat", "urban heat", "urban heat island", "high temperature", "climate change and health", "urban climate risks", "heat-related illness", "heat stress", "heatwave early warning", "Vietnam urban heat", as well as "nắng nóng đô thị", "nắng nóng cực đoạn", "sóng nhiệt", "biến đổi khí hâu và sức khỏe", "ứng phó nắng nóng", "bênh liên

quan đến nắng nóng", "cảnh báo sớm sóng nhiệt". Only media sources containing these search terms were included in the analysis to reduce irrelevant content and ensure thematic consistency. This methodology enabled the capture of a comprehensive range of public discourse and institutional responses to urban heat stress.

1.3. Information retrieval, analysis and synthesis

This section describes the process of retrieving information from the selected documents, as well as the subsequent analysis and synthesis of the extracted data and critical assessments. Relevant information was synthesized using a mixed-methods approach combining qualitative and quantitative analyses.

1.3.1. General approach

Descriptive analyses were conducted to examine trends and distributions within the included studies. The results of this analysis were visualized through charts and maps to facilitate the identification of patterns. In addition, a narrative synthesis method was applied to qualitatively analyze the data [160]. The narrative synthesis followed a three-step approach. First, a preliminary synthesis was developed by grouping studies according to thematic areas, summarizing study characteristics and identifying research topics. Second, relationships within the data were explored by analyzing the consistency and differences in findings across studies and investigating potential factors that may explain contradictory findings. Finally, the reliability of the synthesis was assessed by evaluating the strengths and limitations of the evidence base.

The quality of the included studies was evaluated using a framework based on the Mixed Methods Appraisal Tool (MMAT), which allows for the assessment of qualitative, quantitative, and mixed-methods studies [154]. The assessment of the included articles was conducted systematically and verified to ensure consistency and accuracy.

1.3.2. Specificity for policy documents

Policy documents were systematically reviewed to compile a comprehensive inventory of regulations and guidelines addressing urban heatwaves and high temperatures. This review included an assessment of key strategies and action plans, as well as expert consultations to identify barriers and propose actionable recommendations. Experts from the Ministry of Natural Resources and Environment (MONRE) and the Ministry of Agriculture and Rural Development (MARD) – now the Ministry of Agriculture and Environment (MAE) – with domain-specific knowledge on urban climate and climate change adaptation were engaged to identify barriers to effective policy execution and to propose actionable

recommendations for improving the governance and implementation of heatwave-related policies. This multi-method approach facilitated a comprehensive analysis of media narratives and formal policy frameworks, offering a holistic understanding of urban heat resilience in Vietnam.

2. Results

2.1. Overview of legal documents and scientific articles

The collection and analysis of 372 documents, comprising full texts in both Vietnamese and English, provide a comprehensive foundation for understanding the current state of research and policy frameworks related to extreme urban heat in Vietnam. As detailed in section 1.1, this dataset is divided into three primary groups: Legal Documents related to Extreme Urban Heat (LD_EUH), Vietnamese-language scientific articles, and English-language scientific articles, reflecting the interdisciplinary approach required to address urban heatwaves challenges.

2.1.1. Legal documents in Vietnamese (LD_EUH)

A total of 159 documents related to legal frameworks, policy mechanisms, strategies, plans, and institutional reports from central to local levels were collected and 146 entered the screening phase. This dataset includes:

- 7 laws directly related to climate adaptation and urban heat mitigation [1][2][3][4][5][6][7], but only 2 laws explicitly mention or enable action related to urban heat risk;
- 9 key policy documents [9] [10] [11] [12] [13] [14] [15] [16] [17], including the "National Climate Change Adaptation Plan for 2021–2030" and the Action Plan of the Construction Sector to Respond to Climate Change (2022–2030);
- 63 climate change action plans for the period 2021-2030, with a vision to 2050 issued by all provinces and cities in Vietnam [8] – while comprehensive, these plans mainly address general climate change issues and most do not detail urban heat mitigation or adaptation strategies;
- 14 annual hydrometeorological condition reports from the VNMHA (from 2011 to 2024)
 [28]; 14 annual climate condition reports from IMHEN (from 2011 to 2024) [30];
- 14 reports related to hydrometeorology and climate change [18] [19] [20] [21] [22] [23]
 [24] [25] [26] [27] [28] [29] [30] [31];
- 7 reports related to construction [32] [33] [34] [35] [36] [37] [38];
- 3 reports related to healthcare [39] [40] [41].

Most of these documents have been officially applied to support state management and climate governance activities. Their inclusion reflects both their technical relevance and their operational role in Vietnam's institutional response to urban climate risks. Notably, one

ongoing project led by the Ministry of Health (MOH) is developing a national technical report on the health impacts of climate change. While the report addresses multiple climate hazards, it includes a dedicated analytical section on extreme heat stress in urban populations, supported by preliminary climate-health modeling. This section is directly relevant to our review and offers important insights into emerging adaptation planning in Vietnam's health sector. The report for the MOH project is still under implementation and is expected to be completed by 2027 [41].

There is a substantial increase regulation and strategic documents as well as in official reports/documents after 2016 (Figure 5). This trend aligns with Vietnam's commitment to addressing climate change, particularly following its participation in the Paris Agreement, with contributions from the 63 climate change action plans of all provinces/cities.

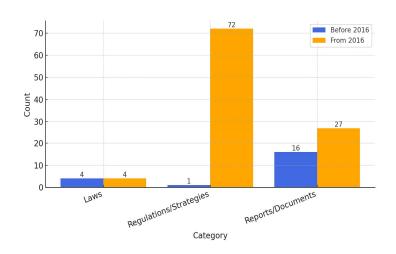
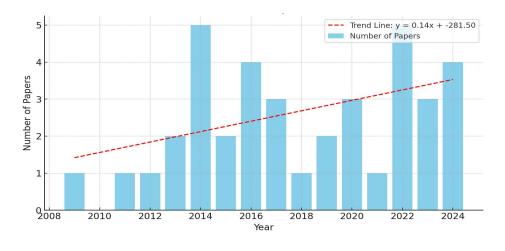


Figure 5. Total number of legal documents (LD EUH) issued before and after 2016, by category.

Source: Authors' own elaboration.

The number of policy and strategic documents rose from 16 before 2016 to 72 after 2016, reflecting growing institutional attention to climate adaptation. However, it is important to emphasize that urban extreme heat remains a marginal focus within these strategies. Most documents focus broadly on climate change or disaster risk reduction, without specific provisions on extreme heat in urban contexts. The number of reports and technical documents also increased from 16 (before 2016) to 27 (after 2016) — a 68.75% growth — signaling a stronger focus on scientific assessments and practical tools. Yet, only a limited subset addresses urban climate change in detail or includes projections of heat indices such as Heat Index (HI) or Wet-Bulb Globe Temperature (WBGT).

Despite this institutional progress, Vietnam's legal framework for extreme urban heat remains fragmented and limited in scope. The total number of national laws remained


unchanged (4 laws before and after 2016), and no major legal reform has been introduced that specifically addresses urban heat mitigation or mandates actionable heat-resilience measures. This highlights a policy gap between climate adaptation rhetoric and concrete legal provisions targeting extreme heat in urban areas.

2.1.2. Scientific publications in Vietnamese

We collected 89 Vietnamese-language scientific articles, of which 49 were selected for inclusion based on their relevance to the topic of urban extreme heat in Vietnam. These studies either explicitly focused on urban areas or included disaggregated urban-level data and analysis.

Geographically, the distribution of city-specific studies is as follows: 17 studies focused on Hanoi; 7 studies focused on Ho Chi Minh City; 25 studies analyzed heat-related phenomena in other cities, including Thừa Thiên Huế, Thanh Hóa, Vinh (Nghệ An), Thái Nguyên, and Bắc Ninh. Additionally, several studies examined urban heat dynamics at a regional level, such as across the Mekong Delta, the Central Coast, or the Red River Delta, incorporating urban heat indicators applicable to multiple cities within those regions. This distribution underscores that while Vietnam's two largest urban centers — Hanoi and Ho Chi Minh City — receive the most research attention, empirical studies on smaller and mid-sized cities are emerging, though still limited in number.

Figure 6. Evolution of the total number of scientific publications in Vietnamese investigating urban heat-related issues in Vietnam, from 2008 to 2024.

Source: Authors' own elaboration.

The increasing number of scientific articles addressing urban heatwaves and extreme heat in Vietnam in recent years (Figure 6) underscores the growing recognition of this critical issue within the academic and research community. This trend reflects the escalating concerns about the impacts of climate change and urbanization on urban thermal environments in Vietnam and indicates a policy-driven push for more scientific investigation and institutional engagement on urban heat issues. Despite the increasing trend, the number of papers fluctuates significantly annually, with low outputs (1 paper/year) during 2008–2012 and in 2018 and 2021.

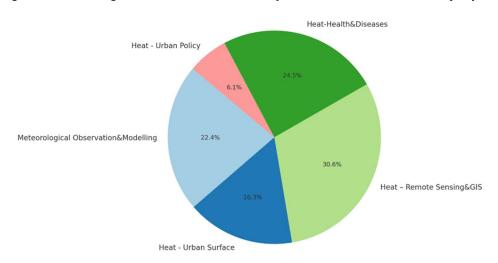


Figure 7. Percentage distribution of scientific publication in Vietnamese by topics.

Note: Total number of articles: 49. Source: Authors' own elaboration.

The distribution of articles by topic (Figure 7) highlights the diverse focus areas within the field. Notably, the H-R&GIS topic accounts for the largest proportion (30.6%), indicating a strong emphasis on leveraging advanced geospatial technologies to study urban heat dynamics. The prominence of this category suggests the importance of advanced data collection and spatial analysis in understanding urban thermal environments and their spatial variability. This is followed by H-H&D at 24.5%, reflecting substantial research interest in the public health implications of urban heat, including the effects of elevated temperatures on human morbidity and mortality. The focus on this area underscores the increasing concern regarding the health risks associated with UHIs and the necessity for interdisciplinary approaches to mitigate health-related impacts. The Obs&M and H-US topics represent 22.4% and 16.3% of the articles, respectively, demonstrating a balanced interest in both observational data and the role of urban surface characteristics in heatwave formation. However, the H-UP (Heat-Urban Policies) category constitutes only 6.1% of the articles. This indicates a limited research focus on policy-driven solutions despite their crucial role in addressing urban heat challenges. The relatively low representation suggests

a relative gap in policy-oriented research, which is critical for translating scientific findings into actionable strategies, highlighting the need for increased collaboration between researchers and policymakers to translate scientific findings into actionable urban heat mitigation policies.

As mentioned above, the research is geographically concentrated primarily in Hanoi (17 articles) and Ho Chi Minh City (7 articles), highlighting a disproportionate focus on Vietnam's two largest cities (Figure 8). This disparity may reflect differences in research capacity, funding availability, or the perceived urgency of addressing heat-related challenges in these two megacities. Hanoi has a strong emphasis on urban surface and remote sensing & GIS related heat studies, while "Other cities" show a pronounced focus on meteorological modelling and health-related heat impacts. Ho Chi Minh City consistently has fewer contributions across all topics. This regional also imbalance suggests a critical research gap in Ho Chi Minh city and other urban areas, which are increasingly vulnerable to the impacts of extreme heat but remain underrepresented in the literature.

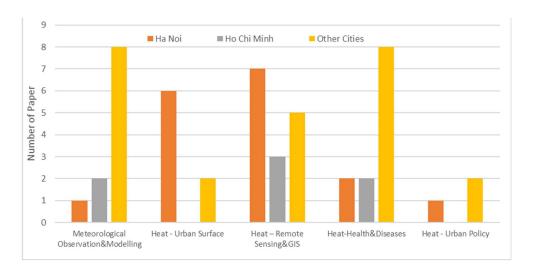
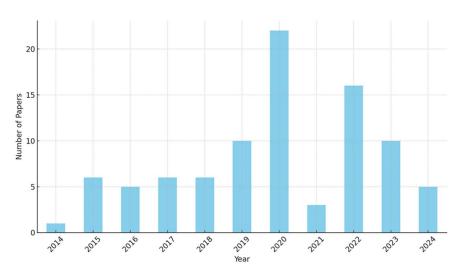


Figure 8. Scientific publications in Vietnamese by city and topic.


Source: Authors' own elaboration.

In general, while the increasing volume of research on urban heatwaves in Vietnam is encouraging, the findings highlight the need for a more balanced distribution of research topics and geographic focus. Greater emphasis on policy-oriented studies (heat-related policies) and expanded research efforts in Ho Chi Minh City could enhance the comprehensiveness and applicability of scientific findings to address urban heat challenges across Vietnam.

2.1.3. Scientific publications in English

A total of 123 English-language scientific articles were collected, of which 59 were deemed relevant to the study. The number of English-language articles, as illustrated in Figure 9, shows that urban heatwaves in Vietnam have gained attention in international journals. However there are important annual fluctuations, with more than 20 articles in 2020 but only 5 articles in 2024, and no clear sustained trend on the topic over the past decade.

Figure 9. Total number of scientific publications on urban-heat related issues in Vietnam, in English, from 2014 to 2024.

Source: Authors' own elaboration.

Similar to the Vietnamese corpus, these studies encompass five major thematic areas, with a notable emphasis on public health impacts (Figure 10):

- Meteorological Observation & Modeling (Obs&M) 15.3%,
- Heat Urban Surface (H-US) 17%,
- Heat Remote Sensing & GIS (H-R&GIS) 16.9%,
- Heat-Health & Diseases (H-H&D) 41%,
- Heat-Urban Policies (H-UP) 8.6%,

The relatively balanced distribution of articles across the Obs&M, H-US, and H-R&GIS topics demonstrates a multidisciplinary approach to understanding urban heat dynamics. However, the H-UP category remains underrepresented, indicating a gap in policy-oriented research that could bridge scientific findings with actionable strategies.

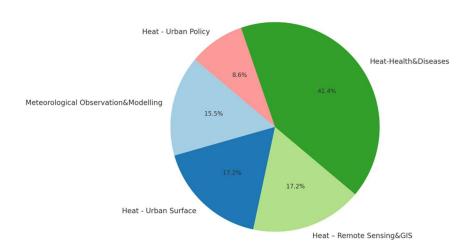


Figure 10. Percentage distribution of scientific publications in English, by topics.

Note: Total number of articles: 59. Source: Authors' own elaboration.

Geographically, the distribution of studies across cities (Figure 11) reveals that while Hanoi and Ho Chi Minh City are prominent research foci, a substantial proportion of studies (44.5%) are conducted in other cities or address general trends across Vietnam. This broader geographic coverage is particularly evident in the H-H&D category, where 19 out of 24 articles focus on other cities, with a notable concentration in the Mekong Delta region. This regional focus likely reflects the vulnerability of the Mekong Delta to climate extremes and its significance as a hotspot for heat-related health studies.

In contrast, research on Obs&M and H-R&GIS topics is more concentrated in Hanoi and Ho Chi Minh City, likely due to the availability of meteorological infrastructure and data in these megacities. The limited number of studies on H-US and H-UP topics in Ho Chi Minh City, compared to Hanoi, suggests potential gaps in research capacity or focus in the southern metropolis.

In general, the increasing volume of English-language research on urban heatwaves in Vietnam is encouraging; the findings highlight the need for a more balanced distribution of research topics and geographic focus. Greater emphasis on policy-oriented studies (H-UP) and expanded research efforts in underrepresented regions, such as Ho Chi Minh City and other urban areas, could enhance the comprehensiveness and applicability of scientific findings. Additionally, the strong focus on health impacts (H-H&D) underscores the urgency of addressing the public health dimensions of urban heat, particularly in vulnerable regions like the Mekong Delta. The geographical concentration of studies in Hanoi and Ho Chi Minh City overlooks the needs of other urban areas, and the limited attention to policy-oriented

research (6.1% in Vietnamese and 8.6% in English) constrains the development of holistic adaptation strategies.

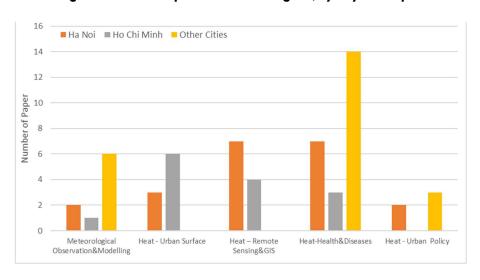


Figure 11. Scientific publications in English, by city and topic.

Source: Authors' own elaboration.

2.2. Meteorological observations and modeling studies (Obs&M)

The analysis of 20 Obs&M studies (11 in Vietnamese and 9 in English) highlights a focus on quantifying extreme heat events. However, only half of these studies specifically address urban heat, with the remainder examining broader regional scales. Although all included studies provided relevant data on urban heat, the limited number of studies with a dedicated urban-scale focus constrains the development of localized adaptation strategies that are crucial to strengthen urban heat resilience in Vietnam's cities.

Geographically, 10 articles focused on urban areas are unevenly distributed, with 3 studies conducted in Hanoi, 3 in Ho Chi Minh City, and 4 in other cities. This distribution suggests that while some attention has been given to Vietnam's two largest megacities, research in other urban areas remains limited. Furthermore, the majority of these studies have concentrated on calculating and analyzing extreme urban heat [42][46][47][48][52][92][93][94][98]. Only two studies investigated future risks of extreme urban heat under climate change scenarios: one in Ho Chi Minh City [102], and another in Hanoi, which assessed the impacts of both global warming and land use changes projected under the Hanoi Master Plan 2030 [108]. One more study investigating the annual average temperature for Ho Chi Minh City, with a warning about extreme heat [91].

The two studies that address future risks of extreme heat under climate change at the national level [49][50] provide a broader perspective but do not offer the granularity needed for localized urban planning and adaptation strategies. This underscores the importance of developing city-specific climate change scenarios and risk assessments, particularly for rapidly urbanizing areas like Ho Chi Minh City.

2.3. Heat-Urban surface studies (H-US)

The analysis of 18 studies classified in the Heat - Urban Surface (H-US) category (8 in Vietnamese and 10 in English) provides valuable insights into the relationship between urban development and extreme urban heat in Vietnam's two largest megacities, Hanoi and Ho Chi Minh City. These studies collectively highlight the significant role of urbanization and surface changes in exacerbating extreme urban heat and urban heat island (UHI) effects, while also identifying potential mitigation strategies.

The geographic focus of these studies is heavily concentrated on Hanoi and Ho Chi Minh City, with most Vietnamese-language studies conducted in Hanoi and a majority of English-language studies focusing on Ho Chi Minh City. This reflects the prominence of these cities as research hubs and their status as rapidly urbanizing areas facing significant heat-related challenges. Among the studies, 8 specifically address urban heat islands (UHI), while 15 focus on extreme urban heat, demonstrating a strong emphasis on understanding the drivers and impacts of heat extremes in urban environments.

A notable contribution of this research topic is the assessment of future urban climate risks based on the master plans of Hanoi and Ho Chi Minh City [56][106][109][110]. These studies provide critical insights into the potential impacts of urban expansion and climate change on extreme heat, offering valuable information for policymakers to integrate into urban planning processes. Particularly noteworthy are the studies by Doan Q.V. and colleagues at the University of Tsukuba, which used a high-resolution regional climate model (WRF) to evaluate the combined effects of urbanization and global warming on Ho Chi Minh City's urban climate [101][102][103][104]. Their findings indicate that urbanization contributes significantly to increased urban temperature. By 2050, average monthly temperatures are projected to increase by 1.6-1.8°C under RCP4.5 scenario and by 2.0-2.2°C under RCP8.5 scenario, with future urbanization accounting for 10-30% and 10-20% of the total rise respectively. Furthermore, these studies explored mitigation strategies such as green roofs and thermal insulation. Their findings demonstrate that while such nature-based and technological solutions can contribute to reducing the UHI effect, their outdoor cooling impacts remain relatively limited in scale. For example, green roofs were estimated to reduce nighttime urban temperatures by approximately 0.25°C [101]. These results suggest

that such strategies, although beneficial, may only partially mitigate the magnitude of urban heat increases and should be integrated as part of a broader set of urban adaptation measures.

Studies using remote sensing and GIS technologies have clearly demonstrated the role of impervious surfaces, residential areas, and commercial buildings in elevating urban temperatures, while highlighting the cooling effects of green spaces such as parks and lakes [61] [62] [63] [64] [65] [66] [68] [69] [70] [72] [73] [74] [75] [111] [112] [113] [114] [115] [116] [117] [119] [120].

2.4. Heat-Remote sensing & GIS studies (H-RS&GIS)

The analysis of 25 scientific articles classified in the Heat - Remote Sensing & GIS (H-RS&GIS) category (15 in Vietnamese and 10 in English) highlights the critical role of advanced geospatial technologies in understanding the relationship between urban heatwaves, high temperatures, and urban surface development. This research direction has provided valuable tools and methodologies for extracting temperature data, mapping extreme urban heat, and evaluating the impacts of surface changes on urban heat islands (UHI).

Again, the geographic focus of these studies is predominantly on Vietnam's two largest megacities, Hanoi and Ho Chi Minh City, with 14 studies conducted in Hanoi and 7 in Ho Chi Minh City. This concentration reflects the availability of remote sensing data and the significant urbanization pressures in these cities, which exacerbate extreme heat and UHI effects. Among the studies, 12 focus on urban heat islands (mostly in English), while 13 address extreme urban heat, demonstrating a balanced emphasis on both phenomena.

A key contribution of this research direction is the development of technologies to extract temperature data from remote sensing information and create detailed maps of extreme urban heat. These tools have enabled researchers to identify spatial patterns of heat distribution within cities, revealing significant temperature variations. For instance, studies have shown that during typical heatwaves, the land surface temperature (LTS) difference between the hottest and coolest areas within Hanoi's inner city can reach up to 13°C [72]. Such findings underscore the localized nature of extreme heat and the importance of targeted interventions to mitigate its impacts.

Additionally, recent research has explored the potential of remote sensing for real-time monitoring of extreme urban heat and urban heat islands [67]. Although these studies have not yet implemented operational real-time monitoring systems, they highlight important technological pathways for improving data availability to support timely responses by urban planners and policymakers.

However, the heavy focus on Hanoi and Ho Chi Minh City leaves other urban areas in Vietnam underrepresented in this research topic. Expanding the geographic scope to include secondary cities and rapidly urbanizing regions would provide a more comprehensive understanding of extreme heat dynamics across the country. Furthermore, while the studies have effectively mapped and monitored extreme heat, there is a need for more research on the socio-economic and health impacts of these phenomena, as well as the effectiveness of mitigation strategies.

2.5. Heat-Health and disease studies (H-H&D)

The reviewed literature highlights that extreme urban heat poses serious public health risks, particularly for vulnerable groups such as the elderly, children, people with pre-existing conditions, and outdoor workers. Studies consistently demonstrate that heat-related illnesses and mortality are strongly associated with high ambient temperatures in urban environments, where the heat island effect exacerbates exposure risks.

High temperatures in Vietnam already have diverse and far-reaching consequences of extreme heat on public health, particularly in urban areas, as highlighted in the review of Woillez (2024) (see references therein), which underscores the need for targeted interventions to mitigate these impacts. In particular, high temperature lead to increased hospitalizations for mental disorders, respiratory disease among young children and heat-related illness among outdoor workers in Hanoi. In Ho Chi Minh City, high temperatures are correlated with increased hospitalizations for cardiovascular diseases, as well as with increases in heat-related mortality risk. However, the positive correlation for cardiovascular, respiratory and mental diseases is not always statistically significant in other cities or Vietnamese regions, highlighting the need for more research to better understand health impact of extreme heat depending on the socio-economic situation of a city or a region.

In this study, the analysis of 36 scientific articles in the Heat-Health & Diseases (H-H&D) category (12 in Vietnamese and 24 in English) provides critical insights into the health impacts of extreme urban heat in Vietnam. These studies collectively highlight the significant and multifaceted risks posed by rising temperatures and heatwaves, particularly in urban areas.

The studies are broadly categorized into two sub-topics: (i) those addressing climate/urban climate-sensitive infectious diseases and extreme climate events in relation to health and diseases (in Vietnamese: [76][77][78][79][80][83][84][85][86] [87]; and in English: [121][126][130][133][134][135][136][139]), and (ii) those directly focusing on extreme urban heat-sensitive infectious diseases and the health impacts of extreme urban heat [122] [123] [124]

[126] [127] [128] [129] [131] [137] [138] [140] [143] [145] [146], with one study specifically examining urban heat islands (UHI) and their health implications [125]. This dual focus reflects the complex interplay between climate change, urbanization, and public health in Vietnam.

A key finding from these studies is the J-shaped relationship between temperatures and all-cause mortality, observed in two single-city studies [123] [124]. These studies indicate that high temperatures with a short lag (0–3 days) significantly increase the risk of all-cause mortality, with a threshold of approximately 29°C. This underscores the acute health risks posed by extreme heat, particularly during heatwaves. In contrast, studies on temperature-hospitalization relationships in multiple provinces/cities predominantly report linear effects, with every 1°C increase in average temperature raising the risk of all-cause hospitalizations by 1.1%–1.3% [125] [137]. Heatwaves were found to have a more pronounced impact on hospitalizations in northern Vietnam compared to the south (5.4% vs. 1.3%), likely due to differences in climate adaptation capacity and infrastructure [137].

The health impacts of extreme heat are particularly severe for vulnerable populations, including the elderly, children [121] [127] [129] [131] [138] [146], and outdoor workers [128]. Prolonged exposure to extreme heat has been linked to increased hospital admissions for cardiovascular and respiratory diseases, mental health disorders, and heat-related illnesses [121] [122] [123] [124] [125] [127] [128] [129] [131] [137] [138] [140] [143]. These risks are exacerbated by factors such as poor urban planning, high population density, and limited access to green spaces, which amplify the urban heat island (UHI) effect [125] [134].

In addition to these direct health impacts, extreme heat also plays a significant role in driving the dynamics of climate-sensitive infectious diseases, particularly dengue fever, in Vietnam. While extreme heat is often studied alongside other environmental and climatic factors, its impact on disease dynamics is consistently evident across multiple studies. Research on dengue fever outbreaks and forecasting demonstrates a clear correlation between high temperatures and increased dengue incidence, particularly during the rainy season and in regions with warm climates year-round. Urban areas, which experience higher temperatures due to the UHI effect, are particularly vulnerable to dengue outbreaks compared to rural areas. The evidence consistently shows that for every 1°C increase in temperature, dengue incidence rises by approximately 5% (range: 3-7.4%), a much higher sensitivity than the 0.4-2.5% increase reported for other infectious diseases [76][77][79][80][83][84][87][126] [135] [136][146]. This underscores the sensitivity of dengue transmission to temperature variations and highlights the need for targeted public health interventions to mitigate the impacts of extreme heat on disease dynamics. The combination of higher temperatures, increased population density, and inadequate urban planning creates an environment conducive to the proliferation of dengue vectors, such as Aedes aegypti mosquitoes. Furthermore, the seasonal nature of dengue outbreaks, which peak during the rainy season, suggests that interventions should be tailored to address both temperature and precipitation patterns.

2.6. Issues of population exposure, impacts and vulnerability

This section provides a multi-dimensional framing of population vulnerability beyond individual-level health outcomes — incorporating spatial, socio-economic, and future risk dimensions that are essential to understanding urban heat impacts. It highlights the complexity of population-level vulnerability to heat, driven by both biophysical exposure and social determinants, and complements more detailed medical and modeling discussions presented in earlier sections.

The findings highlight the profound and multifaceted impacts of climate change and extreme urban heat on public health in Vietnam, particularly in the context of rapid urbanization and population growth. As analyzed in the Introduction, climate change is expected to accelerate in the 21st century [18][19][20][22], resulting in more frequent and severe heatwaves. These heatwaves, exacerbated by the UHI effect, pose significant risks to urban populations by increasing both daytime and nighttime temperatures, which generate cumulative thermal stress on the human body and elevate the risks of heat-related illness and mortality [171].

Tran et al. (2023) [134] conducted a comprehensive review of climate change and health in Vietnam. In addition to synthesizing existing studies, the research team also conducted supplementary analyses to quantify the health risks associated with high temperatures. Their findings provide further insights into heatwave exposure and vulnerability in Vietnam. The study revealed a steady increase in heatwave exposure person-days across all regions, with the Red River Delta experiencing the highest rise (29 million person-days per year) and the Northwest region recording the lowest increase (9 million person-days per year). Nationally, heatwave exposure increased by 200 million person-days from 2001 to 2020 (Figure 12A). The Heat Exposure Vulnerability Index (HEVI), which incorporates factors such as the elderly population, disease prevalence, and urbanization rates, shows an upward trend in Vietnam from 1990 to 2020, significantly exceeding global and WHO regional averages (Figure 12B) [134].

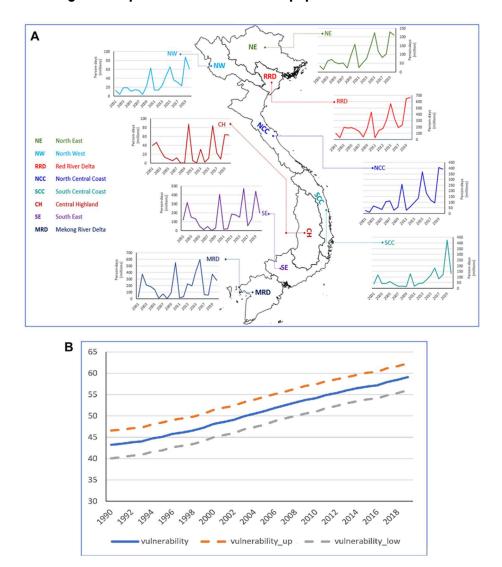


Figure 12. Exposure of the Vietnamese population to heatwaves.

Notes: A) Exposure of populations to heatwaves (in person-days/year) across 8 ecological regions of Vietnam. B) Heat exposure vulnerability index for the Vietnamese population over 1990-2018. Source: Tran et al. (2023) [134].

Projections under climate change scenarios (RCP4.5 and RCP8.5) indicate that heat-related excess mortality in Vietnam could increase by 3–26% by the end of the century (2090–2099), depending on the climate scenario and assuming no adaptation or population changes [155]. Another study finds that heat-related excess mortality in Vietnam could rise by 10.34% per degree of regional warming [161]. Additionally, hospital admissions in the Mekong river delta could increase by 10,000 cases by 2100 in the most severely affected province [81]. These projections underscore the urgent need for targeted public health interventions and climate adaptation strategies.

The increasing exposure of Vietnam's urban populations to extreme heat will be further exacerbated by demographic growth and urban expansion. Between 2011 and 2022, Hanoi's population increased from 6.76 million to 8.43 million, while Ho Chi Minh City's population grew from 7.49 million to 9.39 million (Figure 13). Projections from the "Master Plan for Urban and Rural Systems for the Period 2021–2030, with a Vision to 2050" indicate that this trend will continue, with Hanoi's population expected to reach 10.2 million and Ho Chi Minh City's population projected to hit 12 million by 2030 [16]. This rapid urbanization, coupled with an annual population growth rate of 3.37–4.13% during the 2025–2030 period, will place additional pressure on urban infrastructure, housing, and public health systems.

Figure 13. Evolution of the population (in million of inhabitants) in Ha Noi and Ho Chi Minh city.

Source: Authors' own elaboration, based on the population data from the General Statistics Office of Vietnam (GSO, 2025)

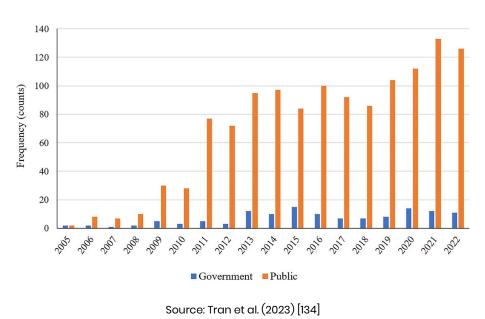
The implications of this population growth are profound. As urban areas expand, the replacement of natural surfaces with impervious materials will likely intensify the UHI effect, further increasing temperatures and exacerbating heat-related risks. The lack of adequate green infrastructure and cooling services in low-income neighborhoods will disproportionately affect vulnerable populations (elderly [137] [140], children [138] [82][131] [129], and outdoor workers [128]), leading to greater health disparities. High temperatures are associated with increased risks of respiratory and cardiovascular diseases, infectious diseases, kidney diseases, and mental health disorders [122][127][137][140] (see section 2.5). Factors such as population density, poverty rates, access to clean water and sanitation, and household income further influence the relationship between temperature and health, with southern provinces being more susceptible to heatwave impacts than northern regions [143].

From an economic perspective, exposure to extreme heat not only drives increasing healthcare costs due to higher hospitalization rates but also reduces labor productivity, especially in sectors such as construction and agriculture [173]. These economic impacts will strain both households and the broader economy. Additionally, they are compounded by social vulnerabilities, as low-income populations often reside in poorly ventilated, densely populated areas with limited access to cooling services [134]. The combination of socioeconomic, geographic, and health factors — such as an aging population, high prevalence of chronic diseases, and proximity to industrial zones — further exacerbates vulnerability to heat-related health issues [125][134].

To mitigate these challenges, it is essential to integrate climate resilience into urban planning and development. Expanding green infrastructure, such as parks, green roofs, and tree-lined streets, can reduce heat absorption and improve air quality. Enhancing community awareness and preparedness for extreme weather events, along with implementing early warning systems, can help reduce population exposure and vulnerability. Furthermore, ensuring equitable access to resources, such as affordable housing with proper ventilation and cooling systems, must be prioritized to protect the most vulnerable populations.

2.7. Policy and community preparedness for extreme heat events

This section examines Vietnam's preparedness to address the growing risks of extreme heat through national and local policies, community engagement, and institutional responses. It highlights the evolution of legal frameworks and public awareness campaigns, identifies critical gaps, and emphasizes the need for a more integrated and strategic approach to extreme heat adaptation.


2.7.1. Awareness of populations

The findings highlight the critical role of awareness and communication in addressing the impacts of climate change, particularly extreme weather events, on vulnerable populations in Vietnam. Several studies have examined awareness and communication efforts targeting outdoor workers, slum dwellers, children, farmers, and other vulnerable groups [23][128][132][141]. While healthcare professionals demonstrate a high level of awareness about climate change adaptation, the general public remains inadequately prepared to respond to the adverse effects of extreme weather. This gap underscores the need for more effective communication and education initiatives to enhance public understanding and preparedness.

Research by Lohrey et al. [128] emphasizes the strong demand for communication and education to raise awareness and improve responses to climate change impacts, particularly weather-related illnesses. Similarly, a survey by IMHEN and CARE (2021) revealed that many farmers struggle to read and understand hydrometeorological bulletins, highlighting the need for training and capacity-building to enable proactive responses to natural disasters [31]. These findings suggest that while there is a growing recognition of the importance of climate information, significant barriers remain in translating this knowledge into actionable responses.

The analysis by Tran et al. (2023) [134] of media coverage on the impacts of climate change on human health provides further insights into the role of communication in raising awareness. The study identified a total of 1,392 articles from 2005 to 2022, with 90.7% coming from public media and the remainder from government sources. Figure 14 illustrates a significant increase in coverage from 2008 (12 articles) to 2011 (82 articles), followed by relative stability with some annual fluctuations [134]. Notably, while government articles remained limited, public media coverage steadily increased, reflecting a growing public interest in climate change and its health impacts.

Figure 14. Frequency of media coverage on climate change and health covered in public media in Vietnam.

Despite the increase in media coverage, the low number of government articles suggests a need for more proactive engagement from official sources to ensure accurate and consistent messaging. Public media, while valuable, may not always provide the depth or reliability required for effective climate communication. Strengthening collaboration

between government agencies, media outlets, and community organizations could enhance the quality and reach of climate-related information.

From 2019 to 2024, the German Red Cross (GRC) collaborated with the Vietnam Red Cross Society (VRCS) to implement the "Forecast-Based Financing for Heatwaves" project. The GRC, in coordination with the Hanoi Red Cross and district-level Red Cross branches in Hanoi, conducted training sessions and disseminated information on heatwaves and their impacts on communities in various districts. They also deployed a heatwave early warning and forecasting system and established cooling shelters and water distribution points to help residents cope with extreme heat in eight districts of Hanoi (Figure 15). Through these activities, the GRC found that a lack of awareness about preventive measures can lead to a failure to take protective health actions during periods of high temperatures. For example, many residents living in areas lacking infrastructure such as shaded areas, cooling systems, or green spaces are more vulnerable to severe impacts during prolonged heatwaves. Additionally, the lack of information and effective communication campaigns contributes to this gap in awareness [23].

Figure 15. Red Cross members and volunteers during a heatwave in Hanoi (2020).

Note: Red Cross members and volunteers learn about the process of supporting heatwave prevention and response (left) and a cooling shelter providing water to residents during a heatwave in Hanoi in 2020 (right). Source: German Red Cross (2023).

In general, urban communities, particularly vulnerable groups such as the elderly, children, and outdoor workers, may not be fully aware of the impacts of extreme heat. This could be due to the lack of systematic training programs and knowledge dissemination to the community. Training programs are often conducted independently or in isolation as part of project activities. In practice, when searching online using keywords such as "community awareness of heatwaves," "urban heatwaves," or "heatwave training," the results primarily consist of weather bulletins from meteorological agencies about heatwaves and

information on heat-related diseases. However, training programs and materials on this issue remain very limited.

2.7.2. Awareness of decision makers

The efforts led by the MONRE, the Ministry of Construction (MOC), and other relevant agencies demonstrate a proactive approach to addressing climate change and its impacts, particularly in the context of urban heatwaves and high temperatures. MONRE's development and periodic updates of climate change scenarios in 2009 [18], 2012 [19], 2016 [20], and 2021 [22] provide a critical foundation for understanding and responding to climate risks. These scenarios, along with the compilation and assessment of climate risks and policy mechanisms for adaptation [22], offer valuable insights for policymakers and local authorities in planning and implementing climate resilience strategies.

The annual updates of heatwave and high-temperature datasets by the VNMHA [28] and the IMHEN [30] ensure that decision-makers have access to the latest information for risk analysis and response planning. The implementation of tools to support data provision and climate risk analysis [24][26][29], as well as the development of localized research reports on urban climate [26][27], further enhance the capacity to address climate challenges at both national and local levels. The NCHMF's bulletins on the impacts of weather on public health and urban heatwaves [29], along with IMHEN's pilot seasonal bulletins forecasting climate impacts on public health [25], represent important steps toward integrating climate information into public health planning and response.

However, these efforts remain at an early stage in terms of addressing urban heat in detail. Most reports do not include detailed projections of extreme temperature indices such as the Heat Index (HI) or Wet-Bulb Globe Temperature (WBGT). Urban heat exposure is often not consistently modeled or visualized, and detailed projections for urban microclimates are largely absent. Even in the most recent national climate change scenario released by the Ministry of Natural Resources and Environment (MONRE, 2021), urban climate change manifestations and urban-specific climate change scenarios are not yet addressed. Since 2023, IMHEN has been conducting assessments of urban climate and developing urban climate change scenarios, which are expected to be published in the next update of the national climate change scenarios planned for release at the end of 2025. Most reports address national or provincial levels, and urban heat exposure is not consistently modeled or visualized. This highlights a critical gap in current institutional assessments and the urgent need for more detailed, urban-focused, and health-relevant climate metrics to inform urban planning and heat-health adaptation.

In the construction sector, the MOC has made significant contributions to climate-resilient urban planning. The development of indicators for climate-resilient urban areas [32], the establishment of a natural database (including heatwave data) [35], and the creation of a framework for urban-climate atlas development [33] provide essential tools for urban planners and policymakers. Additionally, the issuance of guidelines for energy efficiency in buildings [33] and the provision of a scientific basis for urban planning and development [38] underscore the importance of integrating climate resilience into infrastructure and urban design. However, the issue of UHI remains poorly integrated in in urban planning tools and infrastructure guidelines.

In the health sector, studies and reports on climate-sensitive infectious diseases [40][39], assessments of climate impacts on health and disease [39], and tools for dengue fever forecasting [41] highlight the growing recognition of the linkages between climate change and public health. These efforts are critical for developing targeted interventions to mitigate the health risks associated with extreme heat and other climate-related hazards.

Despite these efforts, as highlighted in Section 2.1, only a very small number of legal documents and national-level policies explicitly address extreme heat or urban heat islands. Most adaptation plans and technical guidelines focus on broader climate change risks without specifically targeting urban heat risk management. This indicates that while awareness among decision makers is improving, the legal and policy framework addressing extreme heat in urban areas remains fragmented and underdeveloped.

2.7.3. Current adaptation and mitigation strategies

The integration of high temperatures and heatwaves into Vietnam's legal documents and policy mechanisms reflects a growing recognition of the challenges posed by extreme heat in urban areas. However, the analysis reveals significant gaps and limitations in the current framework, highlighting the need for more comprehensive and targeted approaches to address these issues.

While legal documents related to urban development, hydrometeorology, and climate change mention heatwaves, their coverage remains limited. For instance, only two national building codes (issued in 2009 [2] and 2021 [6]) by the Ministry of Construction include specific data on high temperatures and heatwaves. These codes primarily focus on resilience to strong winds, earthquakes, and urban flooding, with minimal attention to heatwave mitigation. This underscores the need for updated regulations and guidelines that explicitly address the design and implementation of construction projects to withstand extreme heat.

At the national level, the Prime Minister's issuance of the National Climate Change Adaptation Plan (2020 [11], updated in 2024 [17]) and the National Climate Change Strategy to 2050 (2022 [15]) represents significant progress. These plans and strategies include tasks and projects related to urban heatwaves and high temperatures, such as developing climate-resilient urban infrastructure and establishing disaster early warning systems. For instance, the National Adaptation Plan (NAP, 2024) includes a set of adaptation solutions for the urban and construction sectors. These include the development and retrofitting of infrastructure in urban areas, industrial zones, and coastal resettlement sites, with an emphasis on climate-resilient design and materials. Notably, the plan outlines tasks related to green infrastructure, heat-reflective building materials, and spatial planning strategies to mitigate urban heat island effects and the intensification of extreme heat events [17]. Similarly, the National Climate Change Strategy to 2050 [15] identifies reducing greenhouse gas emissions and mitigating urban heat islands as priority objectives. These policies reflect a shift toward more comprehensive urban climate adaptation, encompassing both biophysical risks (e.g., heatwayes) and social vulnerabilities.

However, the implementation of these initiatives remains uneven. For example, the Ministry of Construction's projects on urban development in response to climate change [9][12] have made strides in creating urban-climate atlases and integrating climate change considerations into urban planning. Yet, the urban-climate atlas has only been piloted in Ca Mau City [37], limiting its broader applicability. Preliminary assessments indicate that the pilot atlas includes general climate vulnerability maps but currently does not integrate mapped UHI layers or data-driven simulations of UHI intensity, which are essential for urban heat risk analysis and adaptation planning [37]. This highlights the need for scaling up successful pilot projects and ensuring that critical inputs, such as databases and urbanclimate atlases, are developed for all urban areas. The Ministry of Health's "Climate Change Response Plan for the Health Sector for 2019–2030, with a Vision to 2050" [10] addresses the health impacts of climate change through programs focused on community awareness, early warning systems, and regional response models. However, the lack of systematic implementation of these measures, particularly in vulnerable regions like the Mekong Delta, remains a challenge. In addition, we identified a lack of mandated thresholds or early warning protocols for extreme urban heat, unlike existing systems for floods and typhoons.

Current adaptation and mitigation strategies, such as green infrastructure development, improved building and urban design, and heat action plans, have shown promise but face significant barriers. Significant challenges and risks arise from Vietnam's urbanization trends, as outlined in the "Master Plan for Urban and Rural Systems for the Period 2021–2030, with a Vision to 2050". By 2030, the urbanization rate is expected to exceed 50%, reaching 70%

by 2050, with the total number of urban areas nationwide projected to range from 1,000 to 1,200 [16]. While the plan aims to allocate 16–26% of urban land for transportation and achieve 8–10 m² of green space per capita¹, the pressures of population growth and construction density may hinder these goals. Green infrastructure initiatives, while effective in mitigating UHI effects, are often deprioritized in high-density urban planning, despite the fact that these are the very areas most exposed to extreme heat risks due to impervious surface concentration and limited vegetation cover. In addition, the conversion of agricultural and natural land into residential and industrial areas not only exacerbates the UHI effect but also leads to biodiversity loss, land degradation, and increased environmental pollution.

Similarly, climate-responsive building designs and reflective surfaces are inconsistently implemented due to regulatory gaps and financial constraints. Heat action plans and early warning systems, though piloted in some areas, require stronger inter-agency coordination and technological advancements to enhance their coverage and effectiveness.

Nguyen et al. (2022) [89] identify several shortcomings in Vietnam's approach to urban climate challenges, including a lack of fundamental scientific research on urban climate, insufficient development of urban climate risk databases, and the absence of systematic implementation of climate change adaptation measures. Additionally, legal documents do not fully address urban climate extremes, and nature-based solutions have not been adequately considered.

¹ To meet this target of 8–10 m² of green space per capita by 2050, Vietnam would need approximately 560 to 700 km² of urban green space, i.e. around 4–6% of the projected total urban land area – a relatively modest ratio compared to international benchmarks. WHO for instance recommended the availability of a minimum of 9 m² of green space per individual with an ideal value of 50 m² per capita (cited in [177]).

3. Discussion

Our review reveals substantial progress in terms of policy recognition, scientific research, and pilot initiatives for coping with extreme heat in urban areas. However, the analysis also exposes critical limitations that must be addressed to enhance Vietnam's urban resilience to extreme heat in the context of climate change and rapid urbanization.

First, while urban heat has become an increasingly acknowledged issue in national and local strategies, most legal and planning documents remain general in scope and do not provide specific mechanisms or enforceable targets for heat risk mitigation. The absence of mandated indicators — such as minimum green space ratios, ventilation corridors, reflective surface standards, or localized UHI intensity thresholds — illustrates a disconnect between scientific evidence and operational policy tools. The review highlights that foundational efforts exist in the form of strategic plans and pilot projects, but these have not yet been translated into comprehensive or enforceable implementation pathways.

Second, the institutional landscape remains fragmented. Although sectoral strategies by the Ministry of Construction (MOC), Ministry of Health (MOH), and the newly merged Ministry of Agriculture and Environment (MAE) each acknowledge the issue of urban heat to some extent, there is no cross-sectoral coordination mechanism dedicated to urban heat governance. The lack of institutional integration significantly hampers the scaling of effective adaptation and mitigation measures. For example, climate-health research and early warning systems remain loosely linked with urban planning processes. Likewise, the potential for integrating high-resolution urban climate modeling into urban development planning remains underutilized.

Third, existing research tends to concentrate on Hanoi and Ho Chi Minh City, with limited attention to secondary cities where urbanization is accelerating. Although progress has been made in using remote sensing and GIS technologies to monitor UHI effects and surface changes, these efforts are often project-based and disconnected from long-term urban climate monitoring systems. There is a pressing need to expand the spatial and temporal scope of urban heat studies, including the assessment of socio-economic vulnerabilities and the health impacts of extreme heat in underrepresented regions.

Fourth, the analysis reveals a gap between awareness and action. While awareness among decision makers is improving, practical tools and institutional mandates remain insufficient to support the implementation of heat-resilient urban planning. Community awareness, although increasing through NGO and Red Cross initiatives, remains low among the general population, particularly among vulnerable groups such as the elderly, children, and informal

sector workers. Awareness-raising campaigns are not yet institutionalized or consistently implemented at scale.

Finally, although the Government of Vietnam has articulated a long-term vision for climate-resilient urban development through the "Master Plan for Urban and Rural Systems" and related strategies, operationalization remains weak. Projects such as the urban-climate atlas piloted in Ca Mau City or heatwave early warning systems in Hanoi demonstrate potential, but these need to be institutionalized, expanded, and supported through sustained investment and inter-agency collaboration.

It is important to note that this review, while comprehensive in its scope, remains primarily descriptive in nature due to the fragmented and heterogeneous characteristics of the existing literature. The integration across domains — such as meteorological science, health impacts, and policy instruments — remains limited, in part reflecting the siloed nature of current research efforts in Vietnam. Furthermore, secondary cities remain underrepresented in both scientific and policy analyses. These limitations underscore the need for future research to adopt more integrative, multi-sectoral approaches and to broaden geographical coverage, particularly to rapidly urbanizing mid-sized cities across the country.

4. Conclusions

4.1. Summary of the findings

This comprehensive review highlights the growing challenges posed by extreme heat in urban areas of Vietnam, particularly in the context of rapid urbanization and anthropogenic climate change. The findings underscore the urgent need for integrated strategies to mitigate the impacts of extreme heat, which are exacerbated by UHI effect and local anthropogenic factors such as inadequate infrastructure and high population density. Cities like Hanoi and Ho Chi Minh City are experiencing more frequent and intense heatwaves, with significant implications for public health, economic productivity, and urban sustainability.

Despite recent policy advancements and a growing body of research, Vietnam's current urban heat mitigation and adaptation strategies remain fragmented, and institutional responses lack the operational depth required for long-term resilience. A major gap persists in the legal and regulatory frameworks, which do not yet establish enforceable standards or measurable adaptation targets for urban heat. In practice, urban planning decisions often lack tools or guidelines to systematically evaluate or mitigate UHI impacts.

From a research perspective, the review identifies key contributions and gaps across major themes. Remote sensing and GIS applications (H-RS&GIS) have successfully mapped urban heat in major cities, yet research coverage in secondary cities remains limited. Integration with health and socio-economic indicators is needed to support policy decisions. Urban surface and design studies (H-US) reveal that mitigation strategies such as green roofs and reflective materials have localized cooling benefits, but their effectiveness is insufficient to counter projected climate warming. These measures must be part of broader urban planning and adaptation efforts. Health-related studies (H-H&D) consistently show strong links between extreme heat and increased morbidity, particularly among vulnerable groups.

As mentioned in Section 3, despite the strengths of our review in consolidating diverse sources of evidence and identifying critical knowledge and policy gaps, it remains primarily descriptive in nature. This reflects both the fragmented state of the existing literature and the time constraints of the study. The integration of findings across thematic domains (e.g., meteorology, health, and urban policy) remains limited. Additionally, the review is geographically skewed toward Hanoi and Ho Chi Minh City, with insufficient representation of secondary and emerging urban centers where heat risks are also intensifying. Therefore, future research should move toward more integrative, cross-sectoral analyses that link climatic, socio-economic, and health dimensions of extreme heat. Expanded spatial

coverage, including longitudinal studies in secondary cities, is essential for capturing diverse vulnerability patterns and for informing place-based adaptation strategies.

The review also underscores the need for interdisciplinary and systems-based approaches. While foundational efforts have been initiated — such as pilot urban-climate atlases, health bulletins, and heat early warning systems — these remain geographically limited and lack cross-sectoral scalability. Fragmentation between ministries, particularly the newly established Ministry of Agriculture and Environment (MAE), Ministry of Construction (MOC), and Ministry of Health (MOH), with no dedicated national mechanism or task force focusing on urban heat governance, continues to hinder coordinated responses. Current policies and action plans fall short of operationalizing urban heat adaptation through measurable targets, enforcement mechanisms, and integrated multi-sectoral implementation.

4.2. Recommendations

Addressing extreme urban heat in Vietnam requires not only technical solutions but also institutional innovation, governance reforms, and sustained public engagement. By strengthening coordination, mainstreaming urban climate data into policy, increasing awareness among both decision-makers and the public and centering adaptation efforts on the most vulnerable, Vietnam can move from fragmented pilot initiatives to a comprehensive national strategy for urban heat resilience.

In the light of these findings, to enhance Vietnam's capacity to adapt to and mitigate the impacts of extreme heat in urban areas, we propose the following integrated set of policy recommendations:

4.2.1. Institutions and governance

- Institutionalize cross-sectoral coordination. Establish a national task force on urban heat resilience to ensure coordination between MAE, MOC, MOH and other relevant stakeholders. This body should define responsibilities, align strategies, and facilitate the mainstreaming of heat adaptation measures into planning, health, and infrastructure development, with the support of meteorological agencies.
- Integrate urban Heat mitigation into legal and regulatory frameworks. Revise
 national and local urban planning laws to mandate UHI mitigation strategies such as
 cool pavements, reflective surfaces, urban shading, ventilation corridors, heatresilient building materials and green space expansion. Update building codes to
 include design guidelines that promote thermal comfort and reduce indoor heat

stress. Ensure operationalization through clear guidelines, enforcement mechanisms, and measurable indicators for urban heat mitigation – such as minimum green space ratios, reflective surface standards, or localized UHI intensity thresholds.

4.2.2. Monitoring and risk mapping

- Strengthen urban climate monitoring and data systems. Establish a comprehensive
 urban climate monitoring network by expanding the number of automatic weather
 stations in urban heat-prone zones. Integrate meteorological, remote sensing, and
 GIS data with health and socio-economic indicators, particularly in high-density
 areas. This will support the devlopement of early warningtargeted interventions and
 real-time heat-health alerts, especially in high-density neighborhoods.
- Develop urban-climate atlas including assessment of heat exposure. Based on the
 pilot project of the Ca Mau urban-climate atlas, MOC should prioritize development
 and nationwide implementation of the urban-climate atlas, in collaboration with
 MAE, to integrate high-resolution climate projections that account for global
 warming and localized urbanization trends. This will provide essential input for urban
 planning, smart and green city development, and climate-adaptive public health
 and sectoral strategies.
- Map vulnerable areas. Vulnerability corresponds to the susceptibility of people, infrastructure, economy, or ecosystems to be negatively affected by heat. Vulnerability mapping, encompassing both communities and infrastructure, combined with heat exposure mapping is crucial to identify priority areas for targeted heat adaptation or mitigation strategies.

4.2.3. UHI mitigation

Expand green infrastructure and nature-based solutions. Allocate a minimum
percentage of urban land for green space, particularly in heat-vulnerable areas.
Promote the development of pocket parks, urban forests, green roofs, and green
corridors. Prioritize nature-based solutions in climate adaptation and city master
plans.

• Support public-private investment in climate-smart technologies such as cool pavements, smart ventilation systems, and passive cooling architecture alongside nature-based solutions to manage rising temperatures.

4.2.4. Mitigation of heat-related impacts

- Expand heat early warning systems. Deploy early warning systems to trigger public
 health responses before and during heatwaves. Early warning systems should take
 into account not only air temperature but also air humidity through the use of heatstress indices such as the Heat Index or WBGT. Use multi-platform messaging tailored
 to vulnerable groups, including the elderly, low-income households, and outdoor
 workers.
- Embed heat risks in public health strategies. Develop heat-health action plans at national and local levels. Train healthcare workers to identify and respond to heat-related illnesses. Ensure hospitals have protocols for managing high-temperature events.
- **Develop public services to cope with extreme heat,** such as access to clean water, shaded areas and cooling centers.
- Enhance public awareness and community engagement. Design targeted communication campaigns and training programs to raise awareness about heat risks, behavioral responses, and available public services. These efforts should be accessible, inclusive, and adapted to the needs of vulnerable groups.

4.2.5. International Collaboration and Climate Finance.

- Engage in global initiatives such as the Extreme Heat Resilience Alliance² and the Cool Coalition³ to exchange best practices and access technical and financial support. Aligning with global standards will help accelerate national progress on climate adaptation and urban heat governance.
- Leverage international climate finance for infrastructure upgrades, capacity building, and public health system resilience.

² https://onebillionresilient.org/project/extreme-heat-resilience-alliance/

³ https://coolcoalition.org/

4.2.6. Research

- Promote interdisciplinary and transdisciplinary research and innovation. Support collaboration between urban climatologists, planners, public health professionals, and social scientists.
- Foster innovation in modeling urban microclimates, evaluating mitigation measures, and designing tools for integrated heat risk assessment.
- Fund policy-oriented research programs to integrate remote sensing and climate models into national urban planning processes.
- In order to operationalize urban heat resilience, foster collaboration between researchers and policymakers to translate scientific findings into actionable policies, enforceable urban planning standards, and inclusive governance mechanisms at both national and local levels.

Together, the above recommendations provide a roadmap for Vietnam to strengthen its climate resilience framework and reduce the health, social, and economic impacts of extreme urban heat. It has to be noticed that while some actions (e.g., early warning systems, public awareness campaigns) can be implemented relatively quickly, others (e.g., revising legal frameworks, expanding green infrastructure) inherently require more time and institutional commitment. More targeted studies and context-specific research are necessary to translate the above strategic directions into detailed, prioritized implementation plans for specific cities and regions in Vietnam.

4.3. Additional perspectives

Beyond extreme heat, it is important to acknowledge that Vietnamese cities are increasingly affected by other climate-related extremes such as heavy rainfall, urban flooding, and severe wind events. Recent disasters, including Typhoon Yagi (2024) and record-breaking rainfall episodes in 2025 that caused widespread inundation in northern and central urban areas (e.g., Hue province), underscore the multi-hazard vulnerability of cities in Vietnam. Urban areas are complex systems, highly sensitive not only to temperature extremes but also to hydrometeorological hazards. Furthermore, current urban design regulations (e.g., wind and drainage standards based on 1–20 year return periods) may not sufficiently reflect emerging risks. In addition to climate adaptation, cities are also major greenhouse gas emission sources and must be included in national mitigation strategies. These observations reinforce the need for further research on compound climate risks in urban areas, improved risk-based planning standards, and integrated urban climate resilience pathways.

Hence, as cities become increasingly exposed to climate risks under future climate change scenarios, there is a growing need to develop urban-specific climate projections that capture localized extremes such as heat, flooding, and wind hazards. The integration of such urban climate scenarios into development planning and infrastructure design is essential to ensure that cities are equipped with actionable and context-relevant information for climate resilience. Vietnam's upcoming national climate scenarios (2025) offer a timely opportunity to incorporate downscaled projections tailored to urban environments, thereby supporting science-based urban planning and risk governance.

Bibliography

Legal Documents (LD_EUH)

Laws

- [1] **Quốc Hội Việt Nam. (2014, sửa Đối 2020).** Luật Bảo vệ môi trường. Văn bản luật Việt Nam
- [2]**Quốc hội Việt Nam. (2009).** Luật Quy hoạch đô thị. Văn bản luật Việt Nam.
- [3] **Quốc Hội Việt Nam. (2024).** Luật Quy hoạch đô thị và nông thôn. Văn bản luật Việt Nam.
- [4] **CHÍNH PHỦ. (2010).** Nghị định số 37/2010/NĐ-CP về quản lý không gian, kiến trúc, cảnh quan đô thị. Văn bản chính phủ Việt Nam.
- [5] **B**ộ **Xây dựng. (2009).** QCVN 02:2009/BXD Quy chuẩn kỹ thuật quốc gia số liệu điều kiện tự nhiên dùng trong xây dựng.
- [6] **B**ộ **Xây dựng. (2021).** QCVN 02:2021/BXD Quy chuẩn kỹ thuật quốc gia số liệu điều kiện tự nhiên dùng trong xây dựng (Thay thế QCVN 02:2009/BXD).
- [7] **Tổng cục Tiêu chuẩn Đo tường Chất tượng. (2020).**TCVN ISO 14090:2020 Thích ứng với biến đổi khí hậu –
 Nguyên tắc, yêu cầu và hướng dẫn.

Policies and Strategies

- [8] **CÁC TÌNH/THÀNH PHỐ (2020–2023).** Kế hoạch ứng phó với BĐKH giai đoạn 2021–2030, tầm nhìn 2050 của các tỉnh/thành phố (63 tỉnh/thành phố) (63 kế hoạch của 63 tỉnh/thành phố).
- [9] **Thủ tướng Chính Phủ. (2013).** Quyết định số 2623/QĐ-TTg về phê duyệt Đề án phát triển các đô thị ứng phó với BĐKH giai đoạn 2013–2020.
- [10] **B**ộ **Y T**É. **(2018)**. Quyết định số 7562/QĐ-BYT về phê duyệt kế hoạch ứng phó BĐKH ngành Y tế giai đoạn 2019–2030, tầm nhìn 2050.

- [11] **Thủ Tướng Chính Phủ. (2020).** Quyết định số 1055/QĐ-TTg về ban hành Kế hoạch quốc gia thích ứng với BĐKH giai đoạn 2021–2030, tầm nhìn 2050.
- [12] **Thủ Tướng Chính Phủ. (2021).** Quyết định 438/QĐ-TTg phê duyệt đề án phát triển các đô thị ứng phó với BĐKH giai đoạn 2021–2030.
- [13] **B**ộ **Chính trị. (2022).** Nghị quyết số 06-NQ/TW về quy hoạch, xây dựng, quản lý và phát triển bền vững đô thi Việt Nam đến năm 2030, tầm nhìn đến 2045.
- [14] **Bộ Xây Dựng. (2022).** Quyết định 385/QĐ-BXD phê duyệt Kế hoạch hành động của Ngành xây dựng ứng phó với BĐKH giai đoạn 2022–2030, tầm nhìn 2050.
- [15] **Тн**ủ тướ**ng Сні́мн рн**ử. **(2022).** Quyết định số 896/QĐ-TTg phê duyệt Chiến lược quốc gia về BĐKH đến năm 2050.
- [16] **Thủ Tướng Chính Phủ. (2024).** Quyết định số 891/QĐ-TTg phê duyệt quy hoạch hệ thống đô thị và nông thôn thời kỳ 2021–2030, tầm nhìn 2050.
- [17] **Thủ Tướng Chính Phủ. (2024).** Quyết định số 1422/QĐ-TTg ban hành Kế hoạch quốc gia thích ứng với BĐKH giai đoạn 2021–2030, tầm nhìn 2050 (bản cập nhật).

Reports/Documents by National and Local Governments

TOPIC: Meteorological Observation and Modelling (Obs&M).

- [18] **Bộ Tai neuyen va Moi Tr**ườ**ng. (2009).** Kịch bản BĐKH, NBD cho Việt Nam. NXB Tài nguyên, Môi trường và Bản đồ Việt Nam, 2009.
- [19] **Bộ Tai nguyên va Moi Tr**ườ**ng. (2012).** Kịch bản BĐKH, NBD cho Việt Nam. NXB Tài nguyên, Môi trường và Bản đồ Việt Nam, 2012.
- [20] **B**ộ **TAI NGUYEN VA MOI TR**Ư**ỜNG. (2016).** Kịch bản BĐKH, NBD cho Việt Nam. NXB Tài nguyên, Môi trường và Bản đồ Việt Nam, 2016.

- [21] **B**ộ **TAI NGUYEN VA MOI TR**ườ**NG. (2021).** Đánh giá khí hậu quốc gia. NXB Tài nguyên, Môi trường và Bản đồ Việt Nam, 2021.
- [22] **B**ộ **TAINGUYEN VA MOI TR**Ư 'Ò**NG. (2021).** Kịch bản BĐKH cho Việt Nam. NXB Tài nguyên, Môi trường và Bản đồ Việt Nam, 2021.
- [23] Hội CHỮ THẬP Đổ Cồng HÒA LIÊN BANG ĐứC VÀ HỘI CHỮ THẬP Đổ VIỆT NAM (2019–2021). Hệ thống cảnh báo heat waves ở Hà Nội. Hội chữ thập đổ Cồng hòa Liên Bang Đức, 2021.
- [24] Lươ**ng Quang Huy, va cs.(2015).** Nghiên cứu xây dựng bộ chỉ số khí hậu cực đoạn phục vụ quản lý giám sát biến đổi khí hậu cho Việt Nam. Bộ TNMT, 2015.
- [25] Nguyễn Đạng Mậu, va cs. (2025). Đánh giá điều kiện khí tượng nông nghiệp và cung cấp bản tin thông báo và dự báo khí tượng nông nghiệp, thông tin cảnh báo tác động đối với một số hoạt động kinh tế-xã hội (thử nghiệm cho lĩnh vực sức khoả cộng đồng và du lịch) trong năm 2024. Báo cáo tổng kết nhiệm vụ thường xuyên theo chức năng năm 2024. Viện Khoa học Khí tượng Thủy văn và Biến đổi khí hậu, 2025.
- [26] **Nguyễn Van Thắng, va cs.(2006).** Nghiên cứu các hiện tượng cực đoan (cực trị khí hậu và thiên tai thời tiết) phục vụ phòng chống và giảm nhẹ thiệt hại thiên tai ở thành phố Hà Nội. Sở KHCN TP Hà Nội, 2006.
- [28] **Tổng cục Khi tượng Thủy van (2012-2025).** Đặc điểm KTTV (từ năm 2011 đến năm 2024).
- [29] TRUNG TÂM DỰ BÁO KHÍ TƯỢNG THUỦY VĂN QUỐC GIA (2021). Hiện trạng triển khai dịch vụ khí hậu ở Việt Nam, Hội thảo quốc gia về Dịch vụ khí hậu, Viện Khoa học Khí tượng Thuỷ văn và Biến đổi khí hậu, CARE International in Vietnam. 2021.
- [30] Viện Khoa học Khí tượng Thuỷ văn và Biến đổi khí hậu (2012-2025). Thông báo khí hậu các năm (từ năm 2011-2024). https://imh.ac.vn/category/hoat-dongnghiep-vu/thong-bao-va-du-bao-khi-hau/

[31] Viện Khoa học Khí tượng Thủy văn và Biến đổi khí hậu, CARE International in Vietnam (2021). Báo cáo "dịch vụ khí hậu nông nghiệp ở Việt Nam: Nhu cầu và thách thức", Viện Khoa học Khí tượng Thủy văn và Biến đổi khí hậu, 2021.

TOPIC: Heat - Urban Development

- [32] **Bộ Xây dựng (2016).** Xây dựng Bộ chỉ số đô thị chống chịu với biến đổi khí hậu tại Việt NamVN-CRI. Quỹ Châu Á tài trợ, Bộ Xây dựng, 2016.
- [33] Bộ Xây dựng (2021). Nâng cao hiệu quả sử dụng năng lượng trong các tòa nhà thương mại và chung cư cao tầng tại Việt Nam. Quỹ môi trưởng toàn cầu (GEF) và Cơ quan phát triển Liên hợp quốc (UNDP) tài trợ, Bộ Xây dựng, 2021.
- [34] Lưu Đức Cường, va cs. (2017). Xây dựng khung hướng dẫn lập Atlas đô thị khí hậu cho các đô thị Việt Nam. Thí điểm áp dụng cho Thành phố Cà Mau, tỉnh Cà Mau. 2017. 178tr. (KQNC.002352). Bộ Xây dựng, 2017.
- [35] **Nguyễn Đại Minh, va cs. (2022).** QCVN 02:2022/BXD Quy chuẩn kỹ thuật quốc gia số liệu điều kiện tự nhiên dung trong xây dựng, 2022. 618tr, Bộ Xây dựng, 2022.
- [36] **ỦY BAN KHOA HỌC CONG NGHỆ VA MOI TRƯỜNG, QUỐC HỘI VIỆT NAM (2023).** Báo cáo giám sát việc thực hiện chính sách pháp luật về ứng phó với biến đổi khí hậu.
 Số 1139/BC-UBKHCNMT ngày 11/1/2023.
- [37] **Bộ XAY DỰNG (2021).** Văn bản số 5517/BXD-KHCN ngày 30 tháng 12 năm 2021 về việc báo cáo giám sát việc thực hiện chính sách, pháp luật về ứng phó với biến đổi khí hâu. Hà Nôi: Bô Xây dựng.
- [38] VIỆN QUY HOẠCH DO THỊ VA NONG THON QUỐC GIA (2019). Điều chỉnh định hướng quy hoạch tổng thể phát triển hệ thống đô thị Việt Nam đến năm 2035 và tầm nhìn đến năm 2050 (có tính đến biến đổi khí hậu). 2019. 735tr. (KQNC.002353), Bộ Xây dựng, 2019.

TOPIC: Uban Heat - Health&Diseases

- [39] **LÊ THỊ PHƯƠNG MAI, VÀ CS. (2015).** Nghiên cứu ảnh hưởng của biến đổi khí hậu đến sức khỏe một số cộng đồng dễ bị tổn thương ở Việt Nam và giải pháp ứng phó. Đề tài KHCN-BĐKH.47.
- [40] **Nguyễn Hữu Quyền, và cs. (2019).** Nghiên cứu xác định bộ chỉ tiêu và xây dựng mô hình khí hậu phục vụ cảnh báo nguy cơ phát sinh dịch bệnh trên người ở một số tỉnh vùng miền núi phía Tây Bắc. Đề tài KHCN cấp Bộ TNMT.
- [41] VIỆN DỊCH TỄ TRUNG ƯƠNG (2023-2027). "Dự án xây dựng công cụ dự báo thân thiện với người dùng trong phòng, chống sốt xuất huyết dengue ở Việt Nam".

Scientific Publications In Vietnamese

TOPIC: Meteorological Observation and Modelling (Obs&M)

- [42] Bảo Thạnh, Phạm Thanh Long, Nguyễn Văn Tín (2012). Các yếu tố khí tượng tác động đến khí hậu đô thị thành phố Hồ Chí Minh. Tạp chí KTTV, 2012.
- [43] **CHU THỊ THU H**ườ**NG ET AL., (2010).** Mức độ và xu thế biến đổi của nắng nóng ở Việt Nam giai đoạn 1961-2007. Tạp chí khoa học ĐHQGHN, Khoa học Tự nhiên và Công nghệ 26, Số 3S (2010) 370-383.
- [44] **Hồ Thị Minh Ha, va cs. (2009).** Xu thế và mức độ biến đổi của nhiệt độ cực trị ở Việt Nam trong giai đoạn 1961-2007, Tạp chí Khoa học tự nhiên và Công nghệ 25, Số3S, 412.
- [45] **LE ANH H**ả**I, MAI VAN KHIEM, VU NGỘC LINH, CHU THỊ THU HườNG (2022).** Đánh giá đặc trưng nắng nóng ở Nam Bộ thời kỳ 1991 2020 và biến động trong các pha ENSO. Số. 21 (2022), Tạp chí Khoa học Biến đối khí hậu số, DOI: https://doi.org/10.55659/2525-2496/21.65991
- [46] **LE ĐINH QUANG, (2005).** Sự hình thành "đảo nhiệt" ở nội thành TP Hà Nội. Tạp chí Khí tượng thuỷ văn, số 02, 44-46.
- [47] Nguyễn Kiều Diễm, Phan Kiều Diễm, (2022). Theo dối đảo nhiệt bề mặt đô thị tài TP Cần Thơ giai đoạn 2014-

- 2020, Tạp chi Khoa học Trường ĐH Cần Thơ, Tập 58, Số 4A (2022): 35-44.
- [48] **Nguyễn Thị Tuyết Nam. (2024).** Diễn biến của chỉ số nhiệt (heat index) tại thành phố Hồ Chi Minh giai đoạn năm 1990-2023. Tạp chí Khí tượng Thuỷ văn 2024, 768, 45-53, DOI: 10.36335/VNJHM.2024(768).45-53.
- [49] **Nguyễn Van Thắng, va cs. (2022).** Sự thay đổi của các hiện tượng khí hậu cực đoan ở Việt Nam trong tương lai theo ngưỡng nóng lên toàn cầu 1,5°C và 2,0°C. Tập. 4 Số. 736(1) (2022): Tạp chí Khí tượng Thuỷ văn.
- [50] Nguyễn Van Thắng, va cs. (2013). Chương 3: Những thay đổi của cực đoan khí hậu và tác động đến môi trường vật lý tự nhiên, thuộc báo cáo đặc biệt của Việt Nam về quản lý rủi ro thiên tai và các hiện tượng cực đoan nhằm thúc đẩy thích ứng với BĐKH (SREX_VN). NXB Tài nguyên Môi trường và Bản đồ Việt Nam, Hà Nội.
- [51] Tạ Hữu Chỉnh, Hoang Phuc Lam, Vu Van Thang, Trương Ba Kien (2022). Thử nghiệm khả năng dự báo số ngày nắng nóng trên lãnh thổ Việt Nam bằng mạng thần kinh nhân tạo. Tập. 741 Số. 9 (2022): Tạp chí Khí tượng Thuỷ văn.
- [52] TRẦN DUY HIỀN, TRẦN HÒNG THAI, NGUYỄN ĐANG MẬU (2014). Đánh giá biểu hiện của biến đổi khí hậu ở Đà nẵng. Tập. 639 Số. 03 (2014): Tạp chí Khí tượng Thủy văn.

TOPIC: Heat - Urban Surface (H-US)

- [53] Đào Ngọc Hùng. (2013). Đánh giá ảnh hưởng của giao thông đến hiệu ứng đảo nhiệt ở thành phố Hà nội. Tạp chí khí tượng thủy văn. Số tháng 02 – 2013.
- [54] **Doãn Huy Phương, Ngô Thị Thuỷ (2018).** Ảnh hưởng của quá trình đô thị hoá đến tiểu vùng khí hậu thành phố Hà Nội. Tạp chí Khoa học Biến đổi khí hậu.
- [55] **D**ươ**NG THỊ LợI (2023).** Đánh giá vai trò của không gian xanh trong việc hạn chế tác động của hiện tượng đảo nhiệt đô thị tại thành phố Hà Nội. February 2023TNU Journal of Science and Technology 228(02):280-288 [4] DOI: 10.34238/tnu-jst.7208
- [56] LÊ MINH TUĂN, NGUYỄN PHƯƠNG ĐÔNG, NGUYỄN THỊ KHÁNH PHƯƠNG (2024). Nghiên cứu ảnh hưởng của quy

hoạch đô thị đến đảo nhiệt độ thị sử dụng mô hình số mô phỏng (thí điểm tại Hà Nội). Hội thảo Khoa học Hạ tầng xanh cho phát triển bền vững đô thị và nông thôn

[57] **Nguyễn Phương Đông (2024).** Trực quan hóa diễn biến nhiệt độ bề mặt và đảo nhiệt đô thị của thành phố Hà Nội bằng Google Earth Engine và nền tảng điện toán đám mây. Hội thảo Khoa học Hạ tầng xanh cho phát triển bền vững đô thị và nông thôn

[58] PHAN TRường KHANH, Hồ VĂN TUẤN ANH, NGUYỄN Đức THẮNG, TRAN THI HONG NGOC (2024). Diễn biến đô thị hóa và nhiệt độ bề mặt ở thành phố Long Xuyên. August 2024, Vietnam Journal of Hydrometeorology 8(764):53-65. DOI: 10.36335/VNJHM.2024(764).53-65

[59] Nguyễn Phương Đông, Lê Minh Tuấn, Trần Thị Ngọc (2023). Đánh giá ảnh hưởng của cây xanh đến giảm thiểu hiệu ứng đảo nhiệt đô thị UHI, áp dụng đối với khu đô thị Văn Phú, Hà Đông. Tạp chí Rừng và Môi trường.

[60] **Ngô ĐĂNG QUANG, VÀ CS. (2022).** Nghiên cứu mô phỏng sự phân bố nhiệt độ trong dầm cầu bê tông cốt thép có mặt cắt dạng hộp ở giai đoạn khai thác. October 2022. The Transport and Communications Science Journal 73(8):752-768, DOI: 10.47869/tcsj.73.8.2

TOPIC: Heat - Remote Sensing&GIS (H-RS&GIS)

[61] **Bui, Q.T (2015).** Urban heat island analysis in Ha Noi: Examining the relationship between land surface temperature and impervious surface, in Conference of Application of GIS, 2015, pp. 674–677.

[62] Đặng Như Duán, Đào Ngọc Long, Trịnh Lễ Hùng (2017). Nghiên cứu thay đổi nhiệt độ bề mặt khu vực thành phố Thanh Hoá giai đoạn 2000-2017 từ tư liệu ảnh hồng ngoại nhiệt Landsat. Tạp chí Khoa học Đo đạc và Bản đồ, số 6, trang 26-32.

[63] Nguyễn Kiều Diễm, Phan Kiều Diễm (2023). Đảo nhiệt đô thị tại thành phố trọng điểm vùng Đồng bằng sông Cửu Long dưới góc nhìn viễn thám. Hội thảo khoa học Quản lý đất đai toàn quốc lần thứ I: Học Viện Nông nghiệp Việt Nam, 2023.

[64] Hoàng Anh Huy. (2016). Nghiên cứu sự phân bố nhiệt đô bề mặt đất khu vực thành phố Thái Nguyên

trên cơ sở sử dụng số liệu vệ tinh landsat-8. Tạp chí khí tượng thủy văn. Số tháng 10 - 2016

[65] **Lê Thị Thu Hà, và cs. (2020).** Đánh giá vai trò của cơ cấu lớp phủ bề mặt đô thị trong việc giảm hiệu ứng đảo nhiệt đô thị bằng công nghệ viễn thám và GIS, Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 61, kỳ 2, tr. 76-85. DOI: 10.46326/JMES.2020.61(2).09.

[66] **Nguyên Đức Thuận, Pham Văn Vân (2016).** Ứng dung công nghệ viễn thám và hệ thống thông tin đia lý nghiên cứu thay đổi nhiêt độ bề mặt 12 quân nôi thành, thành phố Hà Nôi giai đoạn 2005 – 2015, Tạp chí Khoa học Nông nghiệp Việt Nam, tập 14, số 8, trang 1219 – 1230.

[67] **NGUYEN THI THUY HANH, QUACH THI CHUC (2022).** Utilizing landsat imageries to monitor urban heat islands in hanoi, vietnam from 2009 to 2021. Tap chí TNMT.

[68] **Nguyễn Thuý Hạnh, (2020).** Tích hợp ảnh Landsat và Sentinel-2A chiết tách nhiệt độ bề mặt đô thị Hà Nội. Tạp chí TNMT

[69] Phạm, M. H., & Nguyễn, V. K. (2017). Phân tích hiện tượng đảo nhiệt đô thị: mối liên hệ giữa nhiệt độ bề mặt đất và bề mặt không thấm nước (ISA – Impervious surface area). Tạp Chí Khoa học Đo đạc Và Bản đồ, (31), 17–22. https://doi.org/10.54491/jgac.2017.31.206

[70] Nguyễn Phương Đông, Lê Minh Tuấn, Trần Thị Ngọc (2023). Đánh giá ảnh hưởng của cây xanh đến giảm thiểu hiệu ứng đảo nhiệt đô thị UHI, áp dụng đối với khu đô thị Văn Phú, Hà Đông. Tạp chí Rừng và Môi trường.

[71] **TRÂN THỊ VÂN, HOÀNG THÁI LAN, LÊ VĂN TRUNG (2009).** Phương pháp viễn thám nhiệt trong nghiên cứu phân bố nhiệt độ bề mặt đô thị. Tạp chi Các khoa học về Trái đất, Tâp 31(2), tr. 168 – 177.

[72] **TRẦN THỊ TÂM, NGUYỄN ĐĂNG M**ẬU **(2022).** Ứng dụng công nghệ viễn thám và GIS nghiên cứu hiện tượng đảo nhiệt đô thị ở các quận nội thành Hà Nội. Tuyển tập Hội thảo Quốc gia về KTTV&BĐKH, IMHEN, 2022.

[73] TRẦN THỊ VÂN, HÀ DƯƠNG XUÂN BẢO, ĐINH THỊ KIM PHƯỢNG, NGUYỄN THỊ TUYẾT MAI VÀ ĐẶNG THỊ MAI NHUNG, (2017). Đặc điểm môi trường nhiệt và diễn biến đảo

nhiệt đô thị bề mặt khu vực Bắc TP.HCM. Tạp chí Khoa học Trường ĐH Cần Thơ, Tập 49, Phần A (2017): 11–20. Doi: 11–20, DOI:10.22144/jvn.2017.002.

[74] TRAN, T.V., HOANG, T.L., AND LE, V.T. (2011). Research on the change of urban surface temperature under impact of urbanization in Ho Chi Minh city by applying remote sensing method, Vietnam J. Earth Sci., 2011, vol. 33, no. 3, pp. 347–359.

[75] **Văn Hùng, N., H**ải **Hòa, N., & Hữu Nghĩa, N. (2019).** Sử dụng ảnh landsat xây dựng bản đồ nhiệt độ bề mặt đất khu vực thành phố sơn la giai đoạn 2015 - 2019. Tạp chí khoa học và công nghệ lâm nghiệp, (6), 077-087.

TOPIC: Heat – Health&Diseases (H-H&D)

[76] Đỗ THị THANH TOÀN, VÀ CS. (2012). Tác động của yếu tố thời tiết lên sự lan truyền của bệnh sốt dengue/sốt xuất huyết dengue tại Hà Nội từ năm 1998-2009. Tạp chí Nghiên cứu Y học, 72 - 74.

[77] **Le Hoang, N. · Phung Duc, N. · Le Dinh Trong, N. (2016).** Tác động của biến đổi khí hậu trên bệnh sốt xuất huyết tại khu vực Nhà Bè, TP. Hồ Chí Minh từ năm 2000 đến năm 2014. Ho Chi Minh J Med. 2016; 20:118-125

[78] LÊ HOÀNG NINH, PHÙNG ĐỰC NHẬT, VÕ HOÀNG PHƯƠNG. (2016). Liên quan bệnh tay chân miệng và yếu tố khí hậu tại 6 Quận/Huyện, Thành Phố Hồ Chí Minh giai đoạn 2008–2014. Ho Chi Minh J Med. 2016; 20:56-64

[79] **LÊ THỊ NG**ọ**c ANH, VÀ CS (2014).** Thiết lập mô hình cảnh báo với độ trễ thời gian cho dịch sốt xuất huyết Dengue tại Hà Nội. Tạp chí nghiên cứu Y học, 83(3), 186-192.

[80] **Huỳnh Nguyễn Phương Quang, Lê Hoàng Hải (2014).** Mối liên quan giữa bệnh truyền nhiễm và sự biến đối khí hậu tại thành phố Cần Thơ giai đoạn 2014–2018. Tạp chí Y học Dự phòng. Tập 20, số 4 phụ bản 2020. DOI: https://doi.org/10.51403/0868-2836/2020/217

[81] **Nguyễn Thị Lien H**ươ**ng, va cs. (2016).** Dự báo tăng nhập viện liên quan tới nhiệt độ tại các bệnh viện tuyến trên thuộc khu vực Đồng bằng sông Cửu Long, Việt Nam. Tạp chí Y học Dự phòng. 2016; 26:99-1

[82] **Nguyễn Thu Ha, Nguyễn Duy Bảo. (2015).** Sóng nhiệt và tình hình nhập viện của trẻ dưới 5 tuổi tại thành phố Vinh, tỉnh Nghệ An. Tạp chí Y học Dự phòng. 2015; 25:205–212.

[83] Nguyễn Tuấn Thành, Nguyễn Đăng Mậu, Thái Thị Thanh Minh, Nguyễn Văn Sơn, Nguyễn Hồng Sơn (2023). Tác động của biến đổi khí hậu đến hoạt động du lịch ngoài trời ở khu vực đồng bằng sông Cửu Long dựa trên chỉ số TCI (Tourism Climate Index). Tập. 751 Số. 7 (2023): Tạp chí Khí tượng Thuỷ văn. doi:10.36335/VNJHM.2023(751).42-52

[84] NGUYỄN VỮ LUÂN, NGUYỄN ĐĂNG MẬU, NGUYỄN TUẨN THÀNH, NGUYỄN HỒNG SƠN, NGUYỄN VĂN SƠN, DƯƠNG HẢI YẾN, PHẠM THANH LONG (2024). ĐÁNH GIÁ ĐIỀU KIỆN KHÍ HẬU ẢNH HƯỞNG ĐẾN SỰC KHỎE CON NGƯỜI THAM GIA HOẠT ĐỘNG DU LỊCH NGOÀI TRỜI ĐỒNG BẰNG SÔNG CỬU LONG THÔNG QUA CHỈ SỐ HCI (HOLIDAY CLIMATE INDEX). Tạp chí Khoa học BĐKH, SỐ 30 (2024). DOI: https://doi.org/10.55659/2525-2496/30.99538

[85] HÀ VĂN NHƯ, NGÔ THỊ ĐIỆM (2014). Đặc điểm tử vong và chấn thương do thảm họa tự nhiên tại Việt Nam từ năm 2000 đến năm 2012 (Characteristics of natural disaster-related death and injury in Viet Nam from 2000 to 2012). Tạp chí Y tế Công cộng. 2014; 2014:28-34

[86] Thái Quang Hùng, Định Thanh Huế, Trần Đình Bình (2014). Phân bố bệnh tay chân miệng và mối liên quan đến một số yếu tố khí hậu ở tỉnh Đắk Lắk năm 2012-2013. Tạp chí Y Dược học - Trường Đại học Y Dược Huế. 2014; 22–23:192-198

[87] **THÁI THỊ THANH MINH, TAE YOON PARK (2019).** Mối liên hệ giữa một số yếu tố khí hậu và dịch sốt xuất huyết tại việt nam, giai đoạn 1997 – 2017. Tạp chí Khoa học Tài nguyên và Môi trường – 2019 – no.26. https://sti.vista.gov.vn/tw/Pages/tai-lieu-khcn.aspx?ltemID=297433

TOPIC: Heat-Policies (HPs).

[88] Lươ**ng Tú Quyên, Phạm Thị Ngọc Liên (2022).** Thiết kế cảnh quan phố đi bộ của Hà Nội phù hợp với điều kiện khí hậu nhiệt đới. Số. 10 (2022). Tạp chí Xây dựng, 2022.

[89] **Nguyễn Đăng Mậu, và cs. (2022).** Nâng cao năng lực chống chịu của đô thị dưới tác động của biến đổi

khí hậu và giảm thiểu phát thải khí nhà kính: Một số kinh nghiệm quốc tế và bài học cho Việt Nam. Diễn đàn Đô Thị Quốc gia năm 2022, Bộ Xây dựng.

[90] **Nguyễn, T.T.T., & Waibel, M. (2021).** Đảo nhiệt đô thị và những hệ lụy đối với Việt Nam. Báo cáo Quốc gia Việt Nam "Chính sách môi trường ở Việt Nam", Số 2, 2021, Nhà Xuất Bản Thanh Niên, TP. Hà Nội, 271–281.

Scientific publications In English

TOPIC: Meteorological Observation and Modelling (Obs&M)

[91] LE, A. N., Vo, T. N., NGUYEN, V. H., & NGUYEN, D. M. (2022). Climate trends and climate change scenarios in Ho Chi Minh City. *IOP Conf. Ser.: Earth Environ. Sci.* 964 012009. DOI 10.1088/1755-1315/964/1/012009

[92] BEHRE, E., WALDSCHMIDT, F., DAOU, D., ROJAS, A., ARCE MOJICA, T., KOIRALA, P., ULLAH, I., SEBESVARI, Z., KREFT, S. AND SOUVIENET, M. (2021). Executive Summary-Can Tho, Vietnam Compound Flood Risk & Heat Waves. http://collections.unu.edu/view/UNU:8482.

[93] CHIEN, N. Q., HUNG, D. N., PHUONG, C. T., HIEN, N., CHI, L. H., HIEN, V. T. AND HUE, D. T. (2024). Assessment of change on the daily maximum heat index for Thai Binh City (Vietnam). *Applied Ecology & Environmental Research*, 22(2). DOI:10.15666/aeer/2202_14791494.

[94] HOANG, T. L., DAO, H. N., CU, P. T., TRAN, V. T., TONG, T. P., HOANG, S. T., VUONG, V. V. AND NGUYEN, T. N. (2022). Assessing heat index changes in the context of climate change: A case study of Ha Noi (Vietnam). Frontiers in Earth Science, 10, 897601, DOI:10.3389/feart.2022.897601.

[95] NGUYEN, D. M., NGUYEN, N. B. P., LE, D. D., HA, T. M. AND Luu, N. L. (2016). Changes in climate extremes in Vietnam. Vietnam Journal of Science, Technology and Engineering, 59(1), 79-87. DOI:10.31276/VJSTE.59(1).79.

[96] OPITZ-STAPLETON, S., SABBAG, L., HAWLEY, K., TRAN, P., HOANG, L. AND NGUYEN, P. H. (2016). Heat index trends and climate change implications for occupational

heat exposure in Da Nang, Vietnam. *Climate Services*, 2, 41-51, DOI:10.1016/j.cliser.2016.08.001.

[97] PHAM, T. L., PHAM, T. H., PHAN, V. T., & Vu, T. Y.. (2023). Variability of heatwaves across Vietnam in recent decades. *Vietnam Journal of Earth Sciences*, 45(4), 517-530, https://doi.org/10.15625/2615-9783/19057

[98] **DINNISSEN, S., VAN AALST, M., PHAM, H. T. T., TRAN, V. T.,** & **Vu, H. H. (2020).** Fostering anticipatory humanitarian actions for heatwaves in Ha Noi through forecast-based financing. April 020, *Climate Services* 18(4):100171. DOI: 10.1016/j.cliser.2020.100171

[99] NGUYEN, V. T., MAI, V. K., VU, V. T., NGUYEN, D. M., NGUYEN, N. B. P., LE, D. D., HA, T. M., & Luu, N. L. (2017). Changes in climate extremes in Vietnam. Vietnam Journal of Science, Technology and Engineering, 59(1), 79–87. https://doi.org/10.31276/VJSTE.59(1).79

TOPIC: Heat - Urban Surface (H-US)

[100] **DIEM, N. K., DIEM, P. K., THIEN, P. M. AND DOWNES, N. K. (2024).** Monitoring Urban Heat Island Spatial Variability over Urban Structure Types–A Case Study from a Fast-growing City in the Vietnamese Mekong Delta. *In IOP Conference Series: Earth and Environmental Science* (Vol. 1345, No. 1, p. 012001). IOP Publishing. DOI:10.1088/1755-1315/1345/1/012001.

[101] **DOAN Q.V (2018).** Numerical Study on the Impact of Urbanization and Future Climate Projection for Greater Ho Chi Minh City, Vietnam. *PhD thesis, Center for Computational Sciences University of Tsukuba, Japan.*

[102] **DOAN Q.V. & KUSAKA, H. (2016).** Numerical study on regional climate change due to the rapid urbanization of greater Ho Chi Minh City's metropolitan area over the past 20 years. *International Journal of Climate.* DOI: 10.1002/joc.4582

[103] **DOAN Q.V., H. KUSAKA, Q.-B Ho (2016).** Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh city. Urban Climate. DOI: 10.1016/j.uclim.2016.04.003.

- [104] **Doan, V. Q., & Kusaka, H. (2018).** Projections of urban climate in the 2050s in a fast-growing city in Southeast Asia: the greater Ho Chi Minh City metropolitan area, Vietnam. International Journal of Climatology, 38(11), 4155-4171.
- [105] HUYNH, C. & ECKERT, R. (2012). Reducing heat and improving thermal comfort through urban design-A case study in Ho Chi Minh city. International Journal of Environmental Science and Development, 3(5), 480. DOI: 10.7763/IJESD.2012.V3.271.
- [106] KUBOTA, T., LEE, H. S., TRIHAMDANI, A. R., PHUONG, T. T. T., TANAKA, T. & MATSUO, K. (2017). Impacts of land use changes from the Ha Noi Master Plan 2030 on urban heat islands: Part 1. Cooling effects of proposed green strategies. Sustainable cities and society, 32, 295-317. DOI:10.1016/j.scs.2017.04.001.
- [107] **LE, M.T., CAO, T.A.T., &TRAN, N.A.Q. (2020).** The role of greenspace in the urbanization of Ha Noi City. *E3S Web Conf.*, 97 (2019), p. 01013, 10.1051/e3sconf/20199701013
- [108] LEE, H. S., TRIHAMDANI, A. R., KUBOTA, T., IIZUKA, S. & PHUONG, T. T. T. (2017). Impacts of land use changes from the Hanoi Master Plan 2030 on urban heat islands: Part 2. Influence of global warming. Sustainable Cities and Society, 31, 95–108.
- [109] NAM, T. H. H., KUBOTA, T. & TRIHAMDANI, A. R. (2015). Impact of urban heat island under the Ha Noi Master Plan 2030 on cooling loads in residential buildings. International Journal of Built Environment and Sustainability, 2(1). DOI:10.11113/ijbes.v2.n1.56.
- [110] **NGUYEN, T. P. C. (2023).** Analyzing the urban heat island In Ho Chi Minh city in relation to urban planning processes from 2010 to 2020: Heat impacts; Mortality. *IOP Conf. Series: Earth and Environmental Science* 1170 (2023) 012016, doi:10.1088/1755-1315/1170/1/012016

TOPIC: Heat - Remote Sensing&GIS (H-RS&GIS)

[111] TRIHAMDANI, A., KUBOTA, T., LEE, H. S., SUMIDA, K., & PHUONG, T. T. T. (2017). Impacts of Land use Changes on Urban Heat Islands in Ha Noi, Vietnam: Scenario Analysis. *Procedia Engineering*, Volume 198, 2017,

Pages 525-529, https://doi.org/10.1016/j.proeng.2017.07.107.

- [112] TRIHAMDANI, A., LEE, H., KUBOTA, T. PHUONG, T.T.T. (2015). Configuration of Green Spaces for Urban Heat Island Mitigation and Future Building Energy Conservation in Ha Noi Master Plan 2030. *Buildings*, 5, 933-947. doi:10.3390/buildings5030933.
- [113] **TRINH, L. H., ZABLOTSKII, V. R., ZENKOV, I. V.,. ET AL. (2022).** Relationship between the Land Surface Temperature and Land Cover Types, a Case Study in Ha Noi City, Vietnam. *Izvestiya, Atmospheric and Oceanic Physics*, 58(9), 1111-1120.
- [114] PHAM, C. C., NGUYEN, N. T., TRAN, Q. T. AND NGUYEN, N. N. (2024). Prediction of surface urban heat island in Ho Chi Minh City, Vietnam using remote sensing and logistic regression model. In *IOP Conference Series: Earth and Environmental Science* (Vol. 1349, No. 1, p. 012031). IOP Publishing. DOI:10.1088/1755-1315/1349/1/012031.
- [115] **Son, Nguyen-Thanh et al. (2017).** Assessment of urbanization and urban heat islands in Ho Chi Minh City, Vietnam using Landsat data. *Sustainable Cities and Society*, 30, pp. 150–161. DOI: 10.1016/j.scs.2017.01.009
- [116] THANH HOAN, N., LIOU, Y. A., NGUYEN, K. A., SHARMA, R. C., TRAN, D. P., LIOU, C. L., & CHAM, D. D. (2018). Assessing the effects of land-use types in surface urban heat islands for developing comfortable living in Hanoi City. *Remote Sensing*, 10(12), 1965.
- [117] **NGUYEN, T. T. (2020).** Landsat time-series images-based urban heat island analysis: The effects of changes in vegetation and built-up land on land surface temperature in summer in the Hanoi metropolitan area, Vietnam. *Environment and Natural Resources Journal*, 18(2), 177-190.
- [118] Tran, T. V., & Ha, D. X. B. (2010). Study of the Impact of Urban Development on Surface Temperature Using Remote Sensing in Ho Chi Minh City, Northern Vietnam. *Geographical Research*, 48(1), 86–96. doi: 10.1111/j.1745-5871.2009.00607.x
- [119] TRAN, T. V., HA, D. X., & NGUYEN, T. T. (2017). Urban thermal environment and heat island in Ho Chi Minh

City, Vietnam from remote sensing data. *Preprints*. DOI:10.20944/preprints201701.0129.vl.

[120] LIOU, Y.-A., NGUYEN, K.-A., & Ho, L.-T. (2021). Altering urban greenspace patterns and heat stress risk in Ha Noi city during. *Urban forestry Land Use Policy*, 105, 105405, https://doi.org/10.1016/j.landusepol.2021.105405.

TOPIC: Heat - Health&Diseases (H-H&D)

- [121] ALTHOUSE, B.M. · FLASCHE, S., MINH, L.N. · ET AL. (2018). Seasonality of respiratory viruses causing hospitalisations for acute respiratory infections in children in Nha Trang, Vietnam. *Int J Infect Dis.* 2018; 75:18-25
- [122] **Chu, L. · Phung, D. · Crowley, S. ET AL. (2022).** Relationships between short-term ambient temperature exposure and kidney disease hospitalisations in the warm season in Vietnam: a case-crossover study. *Environmental Research*, 209, 112776.
- [123] DANG, T. N., SEPOSO, X. T., DUC, N. H. C., THANG, T. B., AN, D. D., HANG, L. T. M., ... HONDA, Y. (2016). Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013. Global Health Action, 9(1). https://doi.org/10.3402/gha.v9.28738
- [124] DANG, T. N., HONDA, Y., VAN DO, D., PHAM, A. L. T., CHU, C., HUANG, C., & PHUNG, D. (2019). Effects of extreme temperatures on mortality and hospitalization in Ho Chi Minh City, Vietnam. International journal of environmental research and public health, 16(3), 432.
- [125] DANG, T. N., VAN, D. Q., KUSAKA, H., SEPOSO, X. T., & HONDA, Y. (2018). Green space and deaths attributable to the urban heat island effect in Ho Chi Minh City. American journal of public health, 108(S2), S137-S143.
- [126] **Do, T. T. T., MARTENS, P., LUU, N. H., WRIGHT, P., & CHOISY, M. (2014).** Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. *BMC public health*, 14(1), 1078.

- [127] GIANG, P. N., DUNG, D. V., GIANG, K. B., VINHC, H. V., & ROCKLÖV, J. (2014). The effect of temperature on cardiovascular disease hospital admissions among elderly people in Thai Nguyen Province, Vietnam. Global health action, 7(1), 23649.
- [128] LOHREY, S., CHUA, M., GROS, C., FAUCET, J., & LEE, J. K. (2021). Perceptions of heat-health impacts and the effects of knowledge and preventive actions by outdoor workers in Hanoi, Vietnam. Science of The Total Environment, 794, 148260.
- [129] Luone, L. M., Phune, D., SLY, P. D., DANE, T. N., MORAWSKA, L., & THAI, P. K. (2019). Effects of temperature on hospitalisation among pre-school children in Hanoi, Vietnam. *Environmental Science and Pollution Research*, 26(3), 2603-2612.
- [130] MINH AN, D. T., & ROCKLÖV, J. (2014). Epidemiology of dengue fever in Hanoi from 2002 to 2010 and its meteorological determinants. *Global health action*, 7(1), 23074.
- [131] Ngo, H. K., Luong, L. M., LE, H. H., DANG, T. N., LE PHAM, A., PHUNG, D., & THAI, P. K. (2021). Impact of temperature on hospital admission for acute lower respiratory infection (ALRI) among pre-school children in Ho Chi Minh City, Vietnam. *International Journal of Biometeorology*, 65(7), 1205–1214.
- [132] NGUYEN, Q. A., HENS, L., NGUYEN, N., MACALISTER, C., & LEBEL, L. (2020). Explaining intentions by vietnamese schoolchildren to adopt pro-environmental behaviors in response to climate change using theories of persuasive communication. Environmental Management, 66(5), 845-857.
- [133] NGUYEN, V. H., TUYET-HANH, T. T., MULHALL, J., MINH, H. V., DUONG, T. Q., CHIEN, N. V., ... & SON, M. T. (2022). Deep learning models for forecasting dengue fever based on climate data in Vietnam. *PLoS Neglected Tropical Diseases*, 16(6), e0010509.
- [134] TRAN, N. Q. L., LE, H. T. C. H., PHAM, C. T., NGUYEN, X. H., TRAN, N. D., TRAN, T. H. T., ... & PHUNG, D. (2023). Climate change and human health in Vietnam: a systematic review and additional analyses on current impacts,

future risk, and adaptation. The Lancet Regional Health–Western Pacific. 40.

- [135] PHAM, N. T., NGUYEN, C. T., & PINEDA-CORTEL, M. R. B. (2020). Time-series modelling of dengue incidence in the Mekong Delta region of Viet Nam using remote sensing data. Western Pacific Surveillance and Response Journal: WPSAR, 11(1), 13.
- [136] PHAM, N. T., NGUYEN, C. T., & VU, H. H. (2020). Assessing and modelling vulnerability to dengue in the Mekong Delta of Vietnam by geospatial and time-series approaches. *Environmental Research*, 186, 109545.
- [137] Phune, D., Chu, C., RUTHERFORD, S., NGUYEN, H. L. T., Do, C. M., & HUANG, C. (2017). Heatwave and risk of hospitalization: A multi-province study in Vietnam. *Environmental Pollution*, 220, 597-607.
- [138] Phune, D., RUTHERFORD, S., CHU, C., WANE, X., NGUYEN, M., NGUYEN, N. H., ... & HUANG, C. (2015). Temperature as a risk factor for hospitalisations among young children in the Mekong Delta area, Vietnam. Occupational and Environmental Medicine, 72(7), 529-535.
- [139] STEVENSON, M. R., HUNG, D. V., TU, N. T. H., MAI, A. L., IVERS, R. Q., & HUONG, H. T. (2012). Evaluation of the Vietnamese A6 mortality reporting system: injury as a cause of death. *Injury prevention*, 18(6), 360-364.
- [140] TALUKDER, M. R., CHU, C., RUTHERFORD, S., HUANG, C., & PHUNG, D. (2022). The effect of high temperatures on risk of hospitalization in northern Vietnam. Environmental Science and Pollution Research, 29(8), 12128-12135.
- [141] THI TUYET-HANH, T., NHAT CAM, N., THI THANH HUONG, L., KHANH LONG, T., MAI KIEN, T., THI KIM HANH, D., ... & VAN MINH, H. (2018). Climate variability and dengue hemorrhagic fever in Hanoi, Viet Nam, during 2008 to 2015. Asia Pacific Journal of Public Health, 30(6), 532-541.
- [142] TOAN, D. T. T., KIEN, V. D., GIANG, K. B., MINH, H. V., & WRIGHT, P. (2014). Perceptions of climate change and its impact on human health: an integrated

- quantitative and qualitative approach. *Global health action*, 7(1), 23025.
- [143] TRAN, D. N., DOAN, V. Q., NGUYEN, V. T., KHAN, A., THAI, P. K., CUNRUI, H., ... & PHUNG, D. (2020). Spatial patterns of health vulnerability to heatwaves in Vietnam. *International journal of biometeorology*, 64(5), 863-872.
- [144] TRAN, Q. A., LE, V. T. H., NGO, V. T., LE, T. H., PHUNG, D. T., BERMAN, J. D., & NGUYEN, H. L. T. (2022). The association between ambient temperatures and hospital admissions due to respiratory diseases in the capital city of Vietnam. Frontiers in Public Health, 10, 903623.
- [145] TRANE, P. M., ROCKLÖV, J., GIANE, K. B., KULLEREN, G., & NILSSON, M. (2016). Heatwaves and hospital admissions for mental disorders in northern Vietnam. *PloS one*, 11(5), e0155609.
- [146] XUAN, L.T.T., EGONDI, T., NGOAN, L.T., TOAN, D.T.T., & HUONG, L.T. (2014). Seasonality in mortality and its relationship to temperature among the older population in Hanoi, Vietnam. Global Health Action, 7(1), 23115.

TOPIC: Heat-Policies (HPs)

- [147] **COE, C. A. (2015).** 'Civilized city': how embedded civil society networks frame the debate on urban green space in Ha Noi, Vietnam. *Asian Journal of Communication*, 25(6), 617–635. https://doi.org/10.1080/01292986.2015.1023321
- [148] **LEDUCQ, D., & SCARWELL, H. J. (2020).** Green-city models as an urban strategy: Hanoi between international practices and local assemblage. *Town Planning Review*, *91*(4), 437-456.
- [149] **Uy, P. D., & NAKAGOSHI, N. (2007).** Analyzing urban green space pattern and eco-network in Hanoi, Vietnam. *Landscape and Ecological Engineering*, 3(2), 143-157.
- [150] **WOILLEZ, M. N. (2024).** Vietnam in the face of extreme heat events: a literature review. *AFD Research Papers* n°335, 8-49.

[151] SCHEUER, S., SUMFLETH, L., NGUYEN, L. D. H., VO, Y., HOANG, T. B. M., & JACHE, J. (2024). A Systematic Assessment of Greening Interventions for Developing Best Practices for Urban Heat Mitigation—The Case of Huế, Vietnam. *Urban Science*, 8(2), 67.

[152] TUYET HANH, T. T., HUONG, L. T. T., HUONG, N. T. L., LINH, T. N. Q., QUYEN, N. H., NHUNG, N. T. T., ... & VAN MINH, H. (2020). Vietnam climate change and health vulnerability and adaptation assessment, 2018. Environmental Health Insights, 14, 1178630220924658.

Additional scientific publications

[153] **SAILOR, D. J. (2011).** A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment. *International journal of climatology*, *31*(2), 189–199.

[154] BOWLER, D. E., BUYUNG-ALI, L., KNIGHT, T. M., & PULLIN, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and urban planning, 97(3), 147-155.

[155] **REN, G. Y. (2015).** Urbanization as a major driver of urban climate change. *Advances in Climate Change Research*, 6(1), 1-6.

[156] GASPARRINI, A., GUO, Y., SERA, F., VICEDO-CABRERA, A. M., HUBER, V., TONG, S., ... & ARMSTRONG, B. (2017). Projections of temperature-related excess mortality under climate change scenarios. *The Lancet Planetary Health*, 1(9), e360-e367.

[157] **Hong'e, M. (2018).** Retirement age may be raised beyond 60: official. *Ecns. cn*, 03-13.

[158] INTERNATIONAL LABOUR ORGANIZATION (2019). Working on a warmer planet: The impact of heat stress on labour productivity and decent work.

[159] IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews,

T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, In press, doi:10.1017/9781009157896.

[160] IPCC (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.)]. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., doi:10.1017/9781009325844.

[161] KOVATS, R. S., & HAJAT, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55.

[162] LEE, J. Y., KIM, H., GASPARRINI, A., ARMSTRONG, B., BELL, M. L., SERA, F., ... & Guo, Y. (2019). Predicted temperature-increase-induced global health burden and its regional variability. *Environment international*, 131, 105027.

[163] **NGUYEN, T.T. (2024).** Land cover change in Hanoi: A comparison between planning cycles. *RealEstate Management and Valuation*, 32(2), 1-12. https://doi.org/10.2478/remav-2024-0009

[164] PHAM, V. T., Vu, X. C., & TRINH, L. H. (2023). Monitoring impervious surfaces change in Ho Chi Minh City from remote sensing and GIS data. Tap chí Khoa hoc Đo đạc và Bản đồ, số 56-6/2023, pg25-33.

[165] POPAY, J., ROBERTS, H., SOWDEN, A., PETTICREW, M., ARAI, L., RODGERS, M., ... & DUFFY, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version, 1(1), b92.

[166] RIZWAN, A. M., DENNIS, L. Y. & LIU, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island. *Journal of environmental sciences*, 20(1), 120-128.

[167] ROMANELLO, M., McGushin, A., DI NAPOLI, C., DRUMMOND, P., HUGHES, N., JAMART, L., ... & HAMILTON, I.

- (2021). The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. *The Lancet*, 398(10311), 1619–1662.
- [168] **OKE, T. R. (1988).** The urban energy balance. *Progress in Physical geography*, 12(4), 471-508.
- [169] **OKE, T.R. (1987).** Boundary Layer Climates. Methuen and Co., New York (1987)
- [170] MASSON, V., LEMONSU, A., HIDALGO, J., & VOOGT, J. (2020). Urban climates and climate change. *Annual Review of Environment and Resources*, 45(1), 411-444.
- [171] **WHO (2024).** Heat-health. Available from: https://www.who.int/news-room/fact-sheets/detail/climate-change-heat-and-health
- [172] **WMO (1996).** Climate and Urban Development. WMO-No.844. Available from: https://community.wmo.int/en/bookstore/climate-and-urban-development
- [173] World Bank (2023). Vietnam country-overview, 2023, April 05, 2023. Available from:

- https://www.worldbank.org/en/country/vietnam/overview
- [174] **UNDP:** https://sdgs.un.org/goals
- [175] FORSTER, P. M., SMITH, C., WALSH, T., LAMB, W. F., LAMBOLL, R., CASSOU, C., ... & ZHAI, P. (2025). Indicators of Global Climate Change 2024: annual update of key indicators of the state of the climate system and human influence. Earth System Science Data Discussions, 2025, 1-72.
- [176] **UNEP (2024).** Emissions Gap Report 2024: No more hot air ... please! With a massive gap between rhetoric and reality, countries draft new climate commitments. United Nations Environment Programme. https://doi.org/10.59117/20.500.118 22/46404
- [177] Russo, A., & CIRELLA, G. T. (2018). Modern compact cities: how much greenery do we need?. International journal of environmental research and public health, 15(10), 2180.

List of acronyms and abbreviations

COP26 Conference of the Parties 26

GIS Geographic Information System

GRC German Red Cross

HEVI Heat Exposure Vulnerability Index

H-H&D Heat - Health and Diseases

H-RS&GIS Heat - Remote Sensing and Geographic Information System

H-UP Heat - Urban Policies

H-US Heat - Urban Surface

IMHEN Viet Nam Institute of Meteorology, Hydrology, and Climate Change

IPCC Intergovernmental Panel on Climate Change

LD_EUH Legal Documents related to Extreme Urban Heat

MAE Ministry of Agriculture and Environment

MARD Ministry of Agriculture and Rural Development

MOC Ministry of Construction

MOH Ministry of Health

MONRE Ministry of Natural Resources and Environment

NAP National Adaptation Plan

NCHMF National Center for Hydro-Meteorological Forecasting

Obs&M Meteorological Observation and Modeling

QCVN Vietnamese Technical Regulations

RCP Representative Concentration Pathway

SDGs Sustainable Development Goals

TCVN Vietnamese Standards

UHI Urban Heat Island

UNDP United Nations Development Programme

VNMHA Vietnam Meteorological and Hydrological Administration

VRCS Vietnam Red Cross Society

WHO World Health Organization

WMO World Meteorological Organization

Agence française de développement 5, rue Roland Barthes 75012 Paris I France www.afd.fr

What is AFD?

Éditions Agence française de développement publishes analysis and research on sustainable development issues. Conducted with numerous partners in the Global North and South, these publications contribute to a better understanding of the challenges faced by our planet and to the implementation of concerted actions within the framework of the Sustainable Development Goals.

With a catalogue of more than 1,000 titles and an average of 80 new publications published every year, Éditions Agence française de développement promotes the dissemination of knowledge and expertise, both in AFD's own publications and through key partnerships. Discover all our publications in open access at editions. afd.fr.

Towards a world in common.

Publication Director Rémy Rioux Editor-in-Chief Thomas Melonio

Legal deposit 3rd quarter 2025 **ISSN** 2492 - 2846

Rights and permissions

Creative Commons license

Attribution - No commercialization - No modification https://creativecommons.org/licenses/by-nc-nd/4.0/

Graphic design MeMo, Juliegilles, D. Cazeils **Layout** PUB Printed by the AFD reprography service

To browse our publications: https://www.afd.fr/en/ressources-accueil